Loading…
Co-Ir interface alloying induced by thermal annealing
Using angular resolved X-ray Photoelectron Spectroscopy (XPS), Magneto Optic Kerr Effect (MOKE) and X-ray Absorption Spectroscopy (XAS), we characterize the structural and magnetic evolution upon annealing of two thin Co films (8 and 9 Monolayers) deposited on Ir(111). The XAS data collected in the...
Saved in:
Published in: | Journal of applied physics 2016-11, Vol.120 (19) |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Using angular resolved X-ray Photoelectron Spectroscopy (XPS), Magneto Optic Kerr Effect (MOKE) and X-ray Absorption Spectroscopy (XAS), we characterize the structural and magnetic evolution upon annealing of two thin Co films (8 and 9 Monolayers) deposited on Ir(111). The XAS data collected in the near Co K edge region (XANES), interpreted with ab-initio simulations, show that intermixing takes place at the Co-Ir interface. Using a linear combination analysis, we follow the intermixing during the thermally driven diffusion process. At 500 °C, the interface between Co and Ir(111) roughens slightly, but no alloy formation is detected. At 600 °C, the Co film loses integrity and MOKE data show a rearrangement of the magnetic domains. Annealing to higher temperatures results in Co
x
Ir1 −
x
alloy formation and Ir segregation on the surface. |
---|---|
ISSN: | 0021-8979 1089-7550 |
DOI: | 10.1063/1.4967845 |