Loading…
First-principles study of the defected phosphorene under tensile strain
By using first-principles calculations, we investigate the defected phosphorene with vacancies under tensile conditions, specifically focusing on its stress-strain relation, band gap, and Li diffusion through the double vacancy. The analysis of the stress-strain relation indicates that, owing to the...
Saved in:
Published in: | Journal of applied physics 2016-10, Vol.120 (16), p.165104 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | By using first-principles calculations, we investigate the defected phosphorene with vacancies under tensile conditions, specifically focusing on its stress-strain relation, band gap, and Li diffusion through the double vacancy. The analysis of the stress-strain relation indicates that, owing to the presence of vacancies, the mechanical properties of phosphorene are significantly degraded in the zigzag direction, including the ideal strength and Young's modulus. Moreover, it is found that tensile strain produces a remarkable reduction in the band gap of the defected phosphorene, and Li diffusion through the defected phosphorene is more energetically favorable compared with the pristine phosphorene, which can be further enhanced under biaxial tension. |
---|---|
ISSN: | 0021-8979 1089-7550 |
DOI: | 10.1063/1.4966167 |