Loading…

Mid-infrared dispersive waves generation in a birefringent fluorotellurite microstructured fiber

Tunable mid-infrared dispersive waves are generated in a birefringent fluorotellurite microstructured fiber (FTMF) pumped by a 1560 nm femtosecond fiber laser. The FTMF have two zero-dispersion wavelengths (ZDWs) for each polarization axis. The second ZDWs for the fast and slow axes of the FTMF are...

Full description

Saved in:
Bibliographic Details
Published in:Applied physics letters 2016-09, Vol.109 (10)
Main Authors: Yao, Chuanfei, Zhao, Zhipeng, Jia, Zhixu, Li, Qing, Hu, Minglie, Qin, Guanshi, Ohishi, Yasutake, Qin, Weiping
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Tunable mid-infrared dispersive waves are generated in a birefringent fluorotellurite microstructured fiber (FTMF) pumped by a 1560 nm femtosecond fiber laser. The FTMF have two zero-dispersion wavelengths (ZDWs) for each polarization axis. The second ZDWs for the fast and slow axes of the FTMF are 2224 and 2042 nm, respectively. As the pump laser is polarized along the fast (or slow) axis of the FTMF, tunable mid-infrared dispersive waves from 2680 to 2725 nm (or from 2260 to 2400 nm) are generated in the FTMF when the Raman soliton meets the second zero-dispersion wavelength of the fast (or slow) axis with increasing the pump power. Our results show that the designed FTMFs are promising nonlinear media for generating tunable mid-infrared light sources.
ISSN:0003-6951
1077-3118
DOI:10.1063/1.4962391