Loading…
Toward controlling the carrier density of Si doped Ga2O3 films by pulsed laser deposition
Precise control of dopant composition is critical for the production of semiconductor films with desired properties. Here, we present results on the electrical properties for Si doped Ga2O3 films grown by pulsed laser deposition technique (PLD). The Si composition in the films can be controlled by c...
Saved in:
Published in: | Applied physics letters 2016-09, Vol.109 (10) |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Precise control of dopant composition is critical for the production of semiconductor films with desired properties. Here, we present results on the electrical properties for Si doped Ga2O3 films grown by pulsed laser deposition technique (PLD). The Si composition in the films can be controlled by changing the target composition as observed from the secondary ion mass spectroscopy measurement. The carrier density of the films is varied from the order of 1015 to 1020 cm−3 while the conductivity from 10−4 to 1 S cm−1 as measured by Hall equipment. The carrier density of the films has been verified by Kelvin force microscopy, which shows an increased surface work function with the increase of carrier density. The results suggest that the carrier density of β-Ga2O3 films is controllable by Si doping by PLD, paving a way to develop the Ga2O3 film-based electronic devices. |
---|---|
ISSN: | 0003-6951 1077-3118 |
DOI: | 10.1063/1.4962463 |