Loading…
Incremental Material Flow Analysis with Bayesian Inference
Summary Material flow analysis (MFA) is widely used to study the life cycles of materials from production, through use, to reuse, recycling, or disposal, in order to identify environmental impacts and opportunities to address them. However, development of this type of analysis is often constrained b...
Saved in:
Published in: | Journal of industrial ecology 2018-12, Vol.22 (6), p.1352-1364 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Summary
Material flow analysis (MFA) is widely used to study the life cycles of materials from production, through use, to reuse, recycling, or disposal, in order to identify environmental impacts and opportunities to address them. However, development of this type of analysis is often constrained by limited data, which may be uncertain, contradictory, missing, or over‐aggregated.
This article proposes a Bayesian approach, in which uncertain knowledge about material flows is described by probability distributions. If little data is initially available, the model predictions will be rather vague. As new data is acquired, it is systematically incorporated to reduce the level of uncertainty.
After reviewing previous approaches to uncertainty in MFA, the Bayesian approach is introduced, and a general recipe for its application to material flow analysis is developed. This is applied to map the global production of steel using Markov Chain Monte Carlo simulations. As well as aiding the analyst, who can get started in the face of incomplete data, this incremental approach to MFA also supports efforts to improve communication of results by transparently accounting for uncertainty throughout. |
---|---|
ISSN: | 1088-1980 1530-9290 |
DOI: | 10.1111/jiec.12698 |