Loading…

High quality factor platinum silicide microwave kinetic inductance detectors

We report on the development of microwave kinetic inductance detectors (MKIDs) using platinum silicide as the sensor material. MKIDs are an emerging superconducting detector technology, capable of measuring the arrival times of single photons to better than two microseconds and their energies to aro...

Full description

Saved in:
Bibliographic Details
Published in:Applied physics letters 2016-10, Vol.109 (15)
Main Authors: Szypryt, P., Mazin, B. A., Ulbricht, G., Bumble, B., Meeker, S. R., Bockstiegel, C., Walter, A. B.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We report on the development of microwave kinetic inductance detectors (MKIDs) using platinum silicide as the sensor material. MKIDs are an emerging superconducting detector technology, capable of measuring the arrival times of single photons to better than two microseconds and their energies to around ten percent. Previously, MKIDs have been fabricated using either sub-stoichiometric titanium nitride or aluminum, but TiN suffers from the spatial inhomogeneities in the superconducting critical temperature and Al has a low kinetic inductance fraction, causing low detector sensitivity. To address these issues, we have instead fabricated the PtSi microresonators with the superconducting critical temperatures of 944 ± 12 mK and high internal quality factors ( Q i ≳ 10 6 ). These devices show typical quasiparticle lifetimes of τ q p ≈ 30 – 40   μ s and spectral resolution, R = λ / Δ λ , of 8 at 406.6 nm. We compare PtSi MKIDs to those fabricated with TiN and detail the substantial advantages that PtSi MKIDs have to offer.
ISSN:0003-6951
1077-3118
DOI:10.1063/1.4964665