Loading…

Tamarind seed skin-derived fiber-like carbon nanostructures as novel anode material for lithium-ion battery

Demand of low-cost carbonaceous anode materials for lithium-ion batteries has led to the development of anode materials from different bio-sources. In this regard, tamarind seed (skin) was used as a precursor to prepare disordered carbon as an anode material for lithium-ion batteries. The carbon was...

Full description

Saved in:
Bibliographic Details
Published in:Ionics 2018-11, Vol.24 (11), p.3413-3421
Main Authors: Sahu, Sumit Ranjan, Parimala Devi, D., Phanikumar, V. V. N., Ramesh, T., Rajalakshmi, N., Praveena, G., Prakash, R., Das, Bijoy, Gopalan, R.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c316t-c1ea67bda7a72c5c2b78a29e2315320b7130dc459435669766fd6876a9623d6b3
cites cdi_FETCH-LOGICAL-c316t-c1ea67bda7a72c5c2b78a29e2315320b7130dc459435669766fd6876a9623d6b3
container_end_page 3421
container_issue 11
container_start_page 3413
container_title Ionics
container_volume 24
creator Sahu, Sumit Ranjan
Parimala Devi, D.
Phanikumar, V. V. N.
Ramesh, T.
Rajalakshmi, N.
Praveena, G.
Prakash, R.
Das, Bijoy
Gopalan, R.
description Demand of low-cost carbonaceous anode materials for lithium-ion batteries has led to the development of anode materials from different bio-sources. In this regard, tamarind seed (skin) was used as a precursor to prepare disordered carbon as an anode material for lithium-ion batteries. The carbon was prepared through simple hydrothermal method and was characterized by X-ray diffraction (XRD), Raman spectroscopy, Brunauer–Emmett–Teller (BET) measurements, field emission scanning electron microscopy (FE-SEM), and transmission electron microscopy (TEM) techniques. It exhibited amorphous carbon particles arranged in a fiber-like morphology with high surface area of 508 m 2  g −1 . The binder content was optimized for the carbon to achieve high and stable capacity. Electrochemical performance of the as-prepared carbon with optimized binder content showed a stable reversible specific capacity of 224 mAhg −1 after 300 cycles at 1 C-rate. The stable cycling performance of carbon at high current rate is explained by electrochemical impedance spectroscopy (EIS) and FE-SEM data of cycled electrodes. The low cost and stable specific capacity make the carbon as potential anode material for lithium-ion battery. Graphical abstract Fiber-like carbon nanostructures from tamarind seed (skin) (TDC) via simple and effective hydrothermal method and its application as a novel anode material for lithium-ion battery.
doi_str_mv 10.1007/s11581-018-2498-2
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2121642529</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2121642529</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-c1ea67bda7a72c5c2b78a29e2315320b7130dc459435669766fd6876a9623d6b3</originalsourceid><addsrcrecordid>eNp1kE1LxDAQhoMouK7-AG8Bz9HMtE3aoyx-wYKX9RzSNNVsu-matAv7781SwZOXCZl5nxl4CLkFfg-cy4cIUJTAOJQM8yqVM7KAUiDjUvBzsuBVLpnkubwkVzFuORcCUC5It9E7HZxvaLQ2lc551tjgDunTutoG1rvOUqNDPXjqtR_iGCYzTsFGqiP1w8H2NLUbS3d6TKTuaTsE2rvxy0075hJW6zFNjtfkotV9tDe_75J8PD9tVq9s_f7ytnpcM5OBGJkBq4WsGy21RFMYrGWpsbKYQZEhryVkvDF5UeVZIUQlhWgbUUqhK4FZI-psSe7mvfswfE82jmo7TMGnkwoBQeRYYJVSMKdMGGIMtlX74JKLowKuTk7V7FQlp-rkVGFicGZiyvpPG_42_w_9AM3RekA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2121642529</pqid></control><display><type>article</type><title>Tamarind seed skin-derived fiber-like carbon nanostructures as novel anode material for lithium-ion battery</title><source>Springer Nature</source><creator>Sahu, Sumit Ranjan ; Parimala Devi, D. ; Phanikumar, V. V. N. ; Ramesh, T. ; Rajalakshmi, N. ; Praveena, G. ; Prakash, R. ; Das, Bijoy ; Gopalan, R.</creator><creatorcontrib>Sahu, Sumit Ranjan ; Parimala Devi, D. ; Phanikumar, V. V. N. ; Ramesh, T. ; Rajalakshmi, N. ; Praveena, G. ; Prakash, R. ; Das, Bijoy ; Gopalan, R.</creatorcontrib><description>Demand of low-cost carbonaceous anode materials for lithium-ion batteries has led to the development of anode materials from different bio-sources. In this regard, tamarind seed (skin) was used as a precursor to prepare disordered carbon as an anode material for lithium-ion batteries. The carbon was prepared through simple hydrothermal method and was characterized by X-ray diffraction (XRD), Raman spectroscopy, Brunauer–Emmett–Teller (BET) measurements, field emission scanning electron microscopy (FE-SEM), and transmission electron microscopy (TEM) techniques. It exhibited amorphous carbon particles arranged in a fiber-like morphology with high surface area of 508 m 2  g −1 . The binder content was optimized for the carbon to achieve high and stable capacity. Electrochemical performance of the as-prepared carbon with optimized binder content showed a stable reversible specific capacity of 224 mAhg −1 after 300 cycles at 1 C-rate. The stable cycling performance of carbon at high current rate is explained by electrochemical impedance spectroscopy (EIS) and FE-SEM data of cycled electrodes. The low cost and stable specific capacity make the carbon as potential anode material for lithium-ion battery. Graphical abstract Fiber-like carbon nanostructures from tamarind seed (skin) (TDC) via simple and effective hydrothermal method and its application as a novel anode material for lithium-ion battery.</description><identifier>ISSN: 0947-7047</identifier><identifier>EISSN: 1862-0760</identifier><identifier>DOI: 10.1007/s11581-018-2498-2</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Anodes ; Carbon ; Chemistry ; Chemistry and Materials Science ; Condensed Matter Physics ; Electrochemical analysis ; Electrochemical impedance spectroscopy ; Electrochemistry ; Electrode materials ; Energy Storage ; Field emission microscopy ; Lithium ; Lithium-ion batteries ; Low cost ; Morphology ; Optical and Electronic Materials ; Original Papers ; Raman spectroscopy ; Rechargeable batteries ; Renewable and Green Energy ; Scanning electron microscopy ; Skin ; Spectrum analysis ; Tamarind ; Transmission electron microscopy ; X-ray diffraction</subject><ispartof>Ionics, 2018-11, Vol.24 (11), p.3413-3421</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2018</rights><rights>Copyright Springer Science &amp; Business Media 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-c1ea67bda7a72c5c2b78a29e2315320b7130dc459435669766fd6876a9623d6b3</citedby><cites>FETCH-LOGICAL-c316t-c1ea67bda7a72c5c2b78a29e2315320b7130dc459435669766fd6876a9623d6b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Sahu, Sumit Ranjan</creatorcontrib><creatorcontrib>Parimala Devi, D.</creatorcontrib><creatorcontrib>Phanikumar, V. V. N.</creatorcontrib><creatorcontrib>Ramesh, T.</creatorcontrib><creatorcontrib>Rajalakshmi, N.</creatorcontrib><creatorcontrib>Praveena, G.</creatorcontrib><creatorcontrib>Prakash, R.</creatorcontrib><creatorcontrib>Das, Bijoy</creatorcontrib><creatorcontrib>Gopalan, R.</creatorcontrib><title>Tamarind seed skin-derived fiber-like carbon nanostructures as novel anode material for lithium-ion battery</title><title>Ionics</title><addtitle>Ionics</addtitle><description>Demand of low-cost carbonaceous anode materials for lithium-ion batteries has led to the development of anode materials from different bio-sources. In this regard, tamarind seed (skin) was used as a precursor to prepare disordered carbon as an anode material for lithium-ion batteries. The carbon was prepared through simple hydrothermal method and was characterized by X-ray diffraction (XRD), Raman spectroscopy, Brunauer–Emmett–Teller (BET) measurements, field emission scanning electron microscopy (FE-SEM), and transmission electron microscopy (TEM) techniques. It exhibited amorphous carbon particles arranged in a fiber-like morphology with high surface area of 508 m 2  g −1 . The binder content was optimized for the carbon to achieve high and stable capacity. Electrochemical performance of the as-prepared carbon with optimized binder content showed a stable reversible specific capacity of 224 mAhg −1 after 300 cycles at 1 C-rate. The stable cycling performance of carbon at high current rate is explained by electrochemical impedance spectroscopy (EIS) and FE-SEM data of cycled electrodes. The low cost and stable specific capacity make the carbon as potential anode material for lithium-ion battery. Graphical abstract Fiber-like carbon nanostructures from tamarind seed (skin) (TDC) via simple and effective hydrothermal method and its application as a novel anode material for lithium-ion battery.</description><subject>Anodes</subject><subject>Carbon</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Condensed Matter Physics</subject><subject>Electrochemical analysis</subject><subject>Electrochemical impedance spectroscopy</subject><subject>Electrochemistry</subject><subject>Electrode materials</subject><subject>Energy Storage</subject><subject>Field emission microscopy</subject><subject>Lithium</subject><subject>Lithium-ion batteries</subject><subject>Low cost</subject><subject>Morphology</subject><subject>Optical and Electronic Materials</subject><subject>Original Papers</subject><subject>Raman spectroscopy</subject><subject>Rechargeable batteries</subject><subject>Renewable and Green Energy</subject><subject>Scanning electron microscopy</subject><subject>Skin</subject><subject>Spectrum analysis</subject><subject>Tamarind</subject><subject>Transmission electron microscopy</subject><subject>X-ray diffraction</subject><issn>0947-7047</issn><issn>1862-0760</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LxDAQhoMouK7-AG8Bz9HMtE3aoyx-wYKX9RzSNNVsu-matAv7781SwZOXCZl5nxl4CLkFfg-cy4cIUJTAOJQM8yqVM7KAUiDjUvBzsuBVLpnkubwkVzFuORcCUC5It9E7HZxvaLQ2lc551tjgDunTutoG1rvOUqNDPXjqtR_iGCYzTsFGqiP1w8H2NLUbS3d6TKTuaTsE2rvxy0075hJW6zFNjtfkotV9tDe_75J8PD9tVq9s_f7ytnpcM5OBGJkBq4WsGy21RFMYrGWpsbKYQZEhryVkvDF5UeVZIUQlhWgbUUqhK4FZI-psSe7mvfswfE82jmo7TMGnkwoBQeRYYJVSMKdMGGIMtlX74JKLowKuTk7V7FQlp-rkVGFicGZiyvpPG_42_w_9AM3RekA</recordid><startdate>20181101</startdate><enddate>20181101</enddate><creator>Sahu, Sumit Ranjan</creator><creator>Parimala Devi, D.</creator><creator>Phanikumar, V. V. N.</creator><creator>Ramesh, T.</creator><creator>Rajalakshmi, N.</creator><creator>Praveena, G.</creator><creator>Prakash, R.</creator><creator>Das, Bijoy</creator><creator>Gopalan, R.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20181101</creationdate><title>Tamarind seed skin-derived fiber-like carbon nanostructures as novel anode material for lithium-ion battery</title><author>Sahu, Sumit Ranjan ; Parimala Devi, D. ; Phanikumar, V. V. N. ; Ramesh, T. ; Rajalakshmi, N. ; Praveena, G. ; Prakash, R. ; Das, Bijoy ; Gopalan, R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-c1ea67bda7a72c5c2b78a29e2315320b7130dc459435669766fd6876a9623d6b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Anodes</topic><topic>Carbon</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Condensed Matter Physics</topic><topic>Electrochemical analysis</topic><topic>Electrochemical impedance spectroscopy</topic><topic>Electrochemistry</topic><topic>Electrode materials</topic><topic>Energy Storage</topic><topic>Field emission microscopy</topic><topic>Lithium</topic><topic>Lithium-ion batteries</topic><topic>Low cost</topic><topic>Morphology</topic><topic>Optical and Electronic Materials</topic><topic>Original Papers</topic><topic>Raman spectroscopy</topic><topic>Rechargeable batteries</topic><topic>Renewable and Green Energy</topic><topic>Scanning electron microscopy</topic><topic>Skin</topic><topic>Spectrum analysis</topic><topic>Tamarind</topic><topic>Transmission electron microscopy</topic><topic>X-ray diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sahu, Sumit Ranjan</creatorcontrib><creatorcontrib>Parimala Devi, D.</creatorcontrib><creatorcontrib>Phanikumar, V. V. N.</creatorcontrib><creatorcontrib>Ramesh, T.</creatorcontrib><creatorcontrib>Rajalakshmi, N.</creatorcontrib><creatorcontrib>Praveena, G.</creatorcontrib><creatorcontrib>Prakash, R.</creatorcontrib><creatorcontrib>Das, Bijoy</creatorcontrib><creatorcontrib>Gopalan, R.</creatorcontrib><collection>CrossRef</collection><jtitle>Ionics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sahu, Sumit Ranjan</au><au>Parimala Devi, D.</au><au>Phanikumar, V. V. N.</au><au>Ramesh, T.</au><au>Rajalakshmi, N.</au><au>Praveena, G.</au><au>Prakash, R.</au><au>Das, Bijoy</au><au>Gopalan, R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tamarind seed skin-derived fiber-like carbon nanostructures as novel anode material for lithium-ion battery</atitle><jtitle>Ionics</jtitle><stitle>Ionics</stitle><date>2018-11-01</date><risdate>2018</risdate><volume>24</volume><issue>11</issue><spage>3413</spage><epage>3421</epage><pages>3413-3421</pages><issn>0947-7047</issn><eissn>1862-0760</eissn><abstract>Demand of low-cost carbonaceous anode materials for lithium-ion batteries has led to the development of anode materials from different bio-sources. In this regard, tamarind seed (skin) was used as a precursor to prepare disordered carbon as an anode material for lithium-ion batteries. The carbon was prepared through simple hydrothermal method and was characterized by X-ray diffraction (XRD), Raman spectroscopy, Brunauer–Emmett–Teller (BET) measurements, field emission scanning electron microscopy (FE-SEM), and transmission electron microscopy (TEM) techniques. It exhibited amorphous carbon particles arranged in a fiber-like morphology with high surface area of 508 m 2  g −1 . The binder content was optimized for the carbon to achieve high and stable capacity. Electrochemical performance of the as-prepared carbon with optimized binder content showed a stable reversible specific capacity of 224 mAhg −1 after 300 cycles at 1 C-rate. The stable cycling performance of carbon at high current rate is explained by electrochemical impedance spectroscopy (EIS) and FE-SEM data of cycled electrodes. The low cost and stable specific capacity make the carbon as potential anode material for lithium-ion battery. Graphical abstract Fiber-like carbon nanostructures from tamarind seed (skin) (TDC) via simple and effective hydrothermal method and its application as a novel anode material for lithium-ion battery.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s11581-018-2498-2</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0947-7047
ispartof Ionics, 2018-11, Vol.24 (11), p.3413-3421
issn 0947-7047
1862-0760
language eng
recordid cdi_proquest_journals_2121642529
source Springer Nature
subjects Anodes
Carbon
Chemistry
Chemistry and Materials Science
Condensed Matter Physics
Electrochemical analysis
Electrochemical impedance spectroscopy
Electrochemistry
Electrode materials
Energy Storage
Field emission microscopy
Lithium
Lithium-ion batteries
Low cost
Morphology
Optical and Electronic Materials
Original Papers
Raman spectroscopy
Rechargeable batteries
Renewable and Green Energy
Scanning electron microscopy
Skin
Spectrum analysis
Tamarind
Transmission electron microscopy
X-ray diffraction
title Tamarind seed skin-derived fiber-like carbon nanostructures as novel anode material for lithium-ion battery
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T18%3A07%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tamarind%20seed%20skin-derived%20fiber-like%20carbon%20nanostructures%20as%20novel%20anode%20material%20for%20lithium-ion%20battery&rft.jtitle=Ionics&rft.au=Sahu,%20Sumit%20Ranjan&rft.date=2018-11-01&rft.volume=24&rft.issue=11&rft.spage=3413&rft.epage=3421&rft.pages=3413-3421&rft.issn=0947-7047&rft.eissn=1862-0760&rft_id=info:doi/10.1007/s11581-018-2498-2&rft_dat=%3Cproquest_cross%3E2121642529%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c316t-c1ea67bda7a72c5c2b78a29e2315320b7130dc459435669766fd6876a9623d6b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2121642529&rft_id=info:pmid/&rfr_iscdi=true