Loading…

Homotopy algebras of differential (super)forms in three and four dimensions

We consider various A ∞ -algebras of differential (super)forms, which are related to gauge theories and demonstrate explicitly how certain reformulations of gauge theories lead to the transfer of the corresponding A ∞ -structures. In addition, for N = 2 3D space, we construct the homotopic counterpa...

Full description

Saved in:
Bibliographic Details
Published in:Letters in mathematical physics 2018-12, Vol.108 (12), p.2669-2694
Main Authors: Rocek, Martin, Zeitlin, Anton M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c316t-18dcf70de2a8e31bacb7d0616c2bc81477ef50e086c8f0ab8cd599f034b558c33
cites cdi_FETCH-LOGICAL-c316t-18dcf70de2a8e31bacb7d0616c2bc81477ef50e086c8f0ab8cd599f034b558c33
container_end_page 2694
container_issue 12
container_start_page 2669
container_title Letters in mathematical physics
container_volume 108
creator Rocek, Martin
Zeitlin, Anton M.
description We consider various A ∞ -algebras of differential (super)forms, which are related to gauge theories and demonstrate explicitly how certain reformulations of gauge theories lead to the transfer of the corresponding A ∞ -structures. In addition, for N = 2 3D space, we construct the homotopic counterpart of the de Rham complex, which is related to the superfield formulation of the N = 2 Chern–Simons theory.
doi_str_mv 10.1007/s11005-018-1109-5
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2121645412</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2121645412</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-18dcf70de2a8e31bacb7d0616c2bc81477ef50e086c8f0ab8cd599f034b558c33</originalsourceid><addsrcrecordid>eNp1kLFOwzAQhi0EEqXwAGyWWGAw3MVx7IyoAoqoxAKz5Th2SdXGwU6Hvj2ugsTEdDf833-nj5BrhHsEkA8J8xAMULG81UyckBkKyRkIDqdkBlxKVgPKc3KR0gYyUwiYkbdl2IUxDAdqtmvXRJNo8LTtvHfR9WNntvQ27QcX73yIu0S7no5f0Tlq-pb6sI85u3N96kKfLsmZN9vkrn7nnHw-P30slmz1_vK6eFwxy7EaGarWegmtK4xyHBtjG9lChZUtGquwlNJ5AQ5UZZUH0yjbirr2wMtGCGU5n5ObqXeI4Xvv0qg3-ZE-n9QFFliVosQip3BK2RhSis7rIXY7Ew8aQR-d6cmZzs700ZkWmSkmJuVsv3bxr_l_6Aeu127j</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2121645412</pqid></control><display><type>article</type><title>Homotopy algebras of differential (super)forms in three and four dimensions</title><source>Springer Link</source><creator>Rocek, Martin ; Zeitlin, Anton M.</creator><creatorcontrib>Rocek, Martin ; Zeitlin, Anton M.</creatorcontrib><description>We consider various A ∞ -algebras of differential (super)forms, which are related to gauge theories and demonstrate explicitly how certain reformulations of gauge theories lead to the transfer of the corresponding A ∞ -structures. In addition, for N = 2 3D space, we construct the homotopic counterpart of the de Rham complex, which is related to the superfield formulation of the N = 2 Chern–Simons theory.</description><identifier>ISSN: 0377-9017</identifier><identifier>EISSN: 1573-0530</identifier><identifier>DOI: 10.1007/s11005-018-1109-5</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Complex Systems ; Geometry ; Group Theory and Generalizations ; Mathematical and Computational Physics ; Physics ; Physics and Astronomy ; Theoretical</subject><ispartof>Letters in mathematical physics, 2018-12, Vol.108 (12), p.2669-2694</ispartof><rights>Springer Nature B.V. 2018</rights><rights>Copyright Springer Science &amp; Business Media 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-18dcf70de2a8e31bacb7d0616c2bc81477ef50e086c8f0ab8cd599f034b558c33</citedby><cites>FETCH-LOGICAL-c316t-18dcf70de2a8e31bacb7d0616c2bc81477ef50e086c8f0ab8cd599f034b558c33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Rocek, Martin</creatorcontrib><creatorcontrib>Zeitlin, Anton M.</creatorcontrib><title>Homotopy algebras of differential (super)forms in three and four dimensions</title><title>Letters in mathematical physics</title><addtitle>Lett Math Phys</addtitle><description>We consider various A ∞ -algebras of differential (super)forms, which are related to gauge theories and demonstrate explicitly how certain reformulations of gauge theories lead to the transfer of the corresponding A ∞ -structures. In addition, for N = 2 3D space, we construct the homotopic counterpart of the de Rham complex, which is related to the superfield formulation of the N = 2 Chern–Simons theory.</description><subject>Complex Systems</subject><subject>Geometry</subject><subject>Group Theory and Generalizations</subject><subject>Mathematical and Computational Physics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Theoretical</subject><issn>0377-9017</issn><issn>1573-0530</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kLFOwzAQhi0EEqXwAGyWWGAw3MVx7IyoAoqoxAKz5Th2SdXGwU6Hvj2ugsTEdDf833-nj5BrhHsEkA8J8xAMULG81UyckBkKyRkIDqdkBlxKVgPKc3KR0gYyUwiYkbdl2IUxDAdqtmvXRJNo8LTtvHfR9WNntvQ27QcX73yIu0S7no5f0Tlq-pb6sI85u3N96kKfLsmZN9vkrn7nnHw-P30slmz1_vK6eFwxy7EaGarWegmtK4xyHBtjG9lChZUtGquwlNJ5AQ5UZZUH0yjbirr2wMtGCGU5n5ObqXeI4Xvv0qg3-ZE-n9QFFliVosQip3BK2RhSis7rIXY7Ew8aQR-d6cmZzs700ZkWmSkmJuVsv3bxr_l_6Aeu127j</recordid><startdate>20181201</startdate><enddate>20181201</enddate><creator>Rocek, Martin</creator><creator>Zeitlin, Anton M.</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20181201</creationdate><title>Homotopy algebras of differential (super)forms in three and four dimensions</title><author>Rocek, Martin ; Zeitlin, Anton M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-18dcf70de2a8e31bacb7d0616c2bc81477ef50e086c8f0ab8cd599f034b558c33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Complex Systems</topic><topic>Geometry</topic><topic>Group Theory and Generalizations</topic><topic>Mathematical and Computational Physics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rocek, Martin</creatorcontrib><creatorcontrib>Zeitlin, Anton M.</creatorcontrib><collection>CrossRef</collection><jtitle>Letters in mathematical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rocek, Martin</au><au>Zeitlin, Anton M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Homotopy algebras of differential (super)forms in three and four dimensions</atitle><jtitle>Letters in mathematical physics</jtitle><stitle>Lett Math Phys</stitle><date>2018-12-01</date><risdate>2018</risdate><volume>108</volume><issue>12</issue><spage>2669</spage><epage>2694</epage><pages>2669-2694</pages><issn>0377-9017</issn><eissn>1573-0530</eissn><abstract>We consider various A ∞ -algebras of differential (super)forms, which are related to gauge theories and demonstrate explicitly how certain reformulations of gauge theories lead to the transfer of the corresponding A ∞ -structures. In addition, for N = 2 3D space, we construct the homotopic counterpart of the de Rham complex, which is related to the superfield formulation of the N = 2 Chern–Simons theory.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11005-018-1109-5</doi><tpages>26</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0377-9017
ispartof Letters in mathematical physics, 2018-12, Vol.108 (12), p.2669-2694
issn 0377-9017
1573-0530
language eng
recordid cdi_proquest_journals_2121645412
source Springer Link
subjects Complex Systems
Geometry
Group Theory and Generalizations
Mathematical and Computational Physics
Physics
Physics and Astronomy
Theoretical
title Homotopy algebras of differential (super)forms in three and four dimensions
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T17%3A40%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Homotopy%20algebras%20of%20differential%20(super)forms%20in%20three%20and%20four%20dimensions&rft.jtitle=Letters%20in%20mathematical%20physics&rft.au=Rocek,%20Martin&rft.date=2018-12-01&rft.volume=108&rft.issue=12&rft.spage=2669&rft.epage=2694&rft.pages=2669-2694&rft.issn=0377-9017&rft.eissn=1573-0530&rft_id=info:doi/10.1007/s11005-018-1109-5&rft_dat=%3Cproquest_cross%3E2121645412%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c316t-18dcf70de2a8e31bacb7d0616c2bc81477ef50e086c8f0ab8cd599f034b558c33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2121645412&rft_id=info:pmid/&rfr_iscdi=true