Loading…
Homotopy algebras of differential (super)forms in three and four dimensions
We consider various A ∞ -algebras of differential (super)forms, which are related to gauge theories and demonstrate explicitly how certain reformulations of gauge theories lead to the transfer of the corresponding A ∞ -structures. In addition, for N = 2 3D space, we construct the homotopic counterpa...
Saved in:
Published in: | Letters in mathematical physics 2018-12, Vol.108 (12), p.2669-2694 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c316t-18dcf70de2a8e31bacb7d0616c2bc81477ef50e086c8f0ab8cd599f034b558c33 |
---|---|
cites | cdi_FETCH-LOGICAL-c316t-18dcf70de2a8e31bacb7d0616c2bc81477ef50e086c8f0ab8cd599f034b558c33 |
container_end_page | 2694 |
container_issue | 12 |
container_start_page | 2669 |
container_title | Letters in mathematical physics |
container_volume | 108 |
creator | Rocek, Martin Zeitlin, Anton M. |
description | We consider various
A
∞
-algebras of differential (super)forms, which are related to gauge theories and demonstrate explicitly how certain reformulations of gauge theories lead to the transfer of the corresponding
A
∞
-structures. In addition, for
N
=
2
3D space, we construct the homotopic counterpart of the de Rham complex, which is related to the superfield formulation of the
N
=
2
Chern–Simons theory. |
doi_str_mv | 10.1007/s11005-018-1109-5 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2121645412</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2121645412</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-18dcf70de2a8e31bacb7d0616c2bc81477ef50e086c8f0ab8cd599f034b558c33</originalsourceid><addsrcrecordid>eNp1kLFOwzAQhi0EEqXwAGyWWGAw3MVx7IyoAoqoxAKz5Th2SdXGwU6Hvj2ugsTEdDf833-nj5BrhHsEkA8J8xAMULG81UyckBkKyRkIDqdkBlxKVgPKc3KR0gYyUwiYkbdl2IUxDAdqtmvXRJNo8LTtvHfR9WNntvQ27QcX73yIu0S7no5f0Tlq-pb6sI85u3N96kKfLsmZN9vkrn7nnHw-P30slmz1_vK6eFwxy7EaGarWegmtK4xyHBtjG9lChZUtGquwlNJ5AQ5UZZUH0yjbirr2wMtGCGU5n5ObqXeI4Xvv0qg3-ZE-n9QFFliVosQip3BK2RhSis7rIXY7Ew8aQR-d6cmZzs700ZkWmSkmJuVsv3bxr_l_6Aeu127j</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2121645412</pqid></control><display><type>article</type><title>Homotopy algebras of differential (super)forms in three and four dimensions</title><source>Springer Link</source><creator>Rocek, Martin ; Zeitlin, Anton M.</creator><creatorcontrib>Rocek, Martin ; Zeitlin, Anton M.</creatorcontrib><description>We consider various
A
∞
-algebras of differential (super)forms, which are related to gauge theories and demonstrate explicitly how certain reformulations of gauge theories lead to the transfer of the corresponding
A
∞
-structures. In addition, for
N
=
2
3D space, we construct the homotopic counterpart of the de Rham complex, which is related to the superfield formulation of the
N
=
2
Chern–Simons theory.</description><identifier>ISSN: 0377-9017</identifier><identifier>EISSN: 1573-0530</identifier><identifier>DOI: 10.1007/s11005-018-1109-5</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Complex Systems ; Geometry ; Group Theory and Generalizations ; Mathematical and Computational Physics ; Physics ; Physics and Astronomy ; Theoretical</subject><ispartof>Letters in mathematical physics, 2018-12, Vol.108 (12), p.2669-2694</ispartof><rights>Springer Nature B.V. 2018</rights><rights>Copyright Springer Science & Business Media 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-18dcf70de2a8e31bacb7d0616c2bc81477ef50e086c8f0ab8cd599f034b558c33</citedby><cites>FETCH-LOGICAL-c316t-18dcf70de2a8e31bacb7d0616c2bc81477ef50e086c8f0ab8cd599f034b558c33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Rocek, Martin</creatorcontrib><creatorcontrib>Zeitlin, Anton M.</creatorcontrib><title>Homotopy algebras of differential (super)forms in three and four dimensions</title><title>Letters in mathematical physics</title><addtitle>Lett Math Phys</addtitle><description>We consider various
A
∞
-algebras of differential (super)forms, which are related to gauge theories and demonstrate explicitly how certain reformulations of gauge theories lead to the transfer of the corresponding
A
∞
-structures. In addition, for
N
=
2
3D space, we construct the homotopic counterpart of the de Rham complex, which is related to the superfield formulation of the
N
=
2
Chern–Simons theory.</description><subject>Complex Systems</subject><subject>Geometry</subject><subject>Group Theory and Generalizations</subject><subject>Mathematical and Computational Physics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Theoretical</subject><issn>0377-9017</issn><issn>1573-0530</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kLFOwzAQhi0EEqXwAGyWWGAw3MVx7IyoAoqoxAKz5Th2SdXGwU6Hvj2ugsTEdDf833-nj5BrhHsEkA8J8xAMULG81UyckBkKyRkIDqdkBlxKVgPKc3KR0gYyUwiYkbdl2IUxDAdqtmvXRJNo8LTtvHfR9WNntvQ27QcX73yIu0S7no5f0Tlq-pb6sI85u3N96kKfLsmZN9vkrn7nnHw-P30slmz1_vK6eFwxy7EaGarWegmtK4xyHBtjG9lChZUtGquwlNJ5AQ5UZZUH0yjbirr2wMtGCGU5n5ObqXeI4Xvv0qg3-ZE-n9QFFliVosQip3BK2RhSis7rIXY7Ew8aQR-d6cmZzs700ZkWmSkmJuVsv3bxr_l_6Aeu127j</recordid><startdate>20181201</startdate><enddate>20181201</enddate><creator>Rocek, Martin</creator><creator>Zeitlin, Anton M.</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20181201</creationdate><title>Homotopy algebras of differential (super)forms in three and four dimensions</title><author>Rocek, Martin ; Zeitlin, Anton M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-18dcf70de2a8e31bacb7d0616c2bc81477ef50e086c8f0ab8cd599f034b558c33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Complex Systems</topic><topic>Geometry</topic><topic>Group Theory and Generalizations</topic><topic>Mathematical and Computational Physics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rocek, Martin</creatorcontrib><creatorcontrib>Zeitlin, Anton M.</creatorcontrib><collection>CrossRef</collection><jtitle>Letters in mathematical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rocek, Martin</au><au>Zeitlin, Anton M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Homotopy algebras of differential (super)forms in three and four dimensions</atitle><jtitle>Letters in mathematical physics</jtitle><stitle>Lett Math Phys</stitle><date>2018-12-01</date><risdate>2018</risdate><volume>108</volume><issue>12</issue><spage>2669</spage><epage>2694</epage><pages>2669-2694</pages><issn>0377-9017</issn><eissn>1573-0530</eissn><abstract>We consider various
A
∞
-algebras of differential (super)forms, which are related to gauge theories and demonstrate explicitly how certain reformulations of gauge theories lead to the transfer of the corresponding
A
∞
-structures. In addition, for
N
=
2
3D space, we construct the homotopic counterpart of the de Rham complex, which is related to the superfield formulation of the
N
=
2
Chern–Simons theory.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11005-018-1109-5</doi><tpages>26</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0377-9017 |
ispartof | Letters in mathematical physics, 2018-12, Vol.108 (12), p.2669-2694 |
issn | 0377-9017 1573-0530 |
language | eng |
recordid | cdi_proquest_journals_2121645412 |
source | Springer Link |
subjects | Complex Systems Geometry Group Theory and Generalizations Mathematical and Computational Physics Physics Physics and Astronomy Theoretical |
title | Homotopy algebras of differential (super)forms in three and four dimensions |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T17%3A40%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Homotopy%20algebras%20of%20differential%20(super)forms%20in%20three%20and%20four%20dimensions&rft.jtitle=Letters%20in%20mathematical%20physics&rft.au=Rocek,%20Martin&rft.date=2018-12-01&rft.volume=108&rft.issue=12&rft.spage=2669&rft.epage=2694&rft.pages=2669-2694&rft.issn=0377-9017&rft.eissn=1573-0530&rft_id=info:doi/10.1007/s11005-018-1109-5&rft_dat=%3Cproquest_cross%3E2121645412%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c316t-18dcf70de2a8e31bacb7d0616c2bc81477ef50e086c8f0ab8cd599f034b558c33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2121645412&rft_id=info:pmid/&rfr_iscdi=true |