Loading…
Lead-free Mn-doped (K0.5,Na0.5)NbO3 piezoelectric thin films for MEMS-based vibrational energy harvester applications
Lead-free Mn-doped (K0.5, Na0.5)NbO3 (KNN) thin films were fabricated by the chemical solution deposition method. The addition of small concentration of Mn dopant effectively reduced the leakage current density and enhanced the piezoelectric properties of the films. The leakage current density of 0....
Saved in:
Published in: | Applied physics letters 2016-06, Vol.108 (23) |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c428t-161bd10b590e9889a72c1a0a55330aa7c8ce3dfcaf75c6de9e59454d550eee1d3 |
---|---|
cites | cdi_FETCH-LOGICAL-c428t-161bd10b590e9889a72c1a0a55330aa7c8ce3dfcaf75c6de9e59454d550eee1d3 |
container_end_page | |
container_issue | 23 |
container_start_page | |
container_title | Applied physics letters |
container_volume | 108 |
creator | Won, Sung Sik Lee, Joonhee Venugopal, Vineeth Kim, Dong-Joo Lee, Jinkee Kim, Ill Won Kingon, Angus I. Kim, Seung-Hyun |
description | Lead-free Mn-doped (K0.5, Na0.5)NbO3 (KNN) thin films were fabricated by the chemical solution deposition method. The addition of small concentration of Mn dopant effectively reduced the leakage current density and enhanced the piezoelectric properties of the films. The leakage current density of 0.5 mol. % Mn-doped KNN film showed the lowest value of ∼10-7 A/cm2 at 10 V compared to the films with other doping concentrations and the piezoelectric d33 and e31 coefficients of this film were ∼90 pm/V and −8.5 C/m2, respectively. The maximum power and power density of the lead-free thin film-based vibrational energy harvesting device were 3.62 μW and 1800 μW/cm3 at the resonance frequency of 132 Hz and the acceleration of 1.0 G. The results prove that the 0.5 mol. % Mn-doped KNN film is an attractive candidate transducer layer for the piezoelectric MEMS energy harvesting device applications with a small volume and a long-lasting power source. |
doi_str_mv | 10.1063/1.4953623 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2121714280</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2121714280</sourcerecordid><originalsourceid>FETCH-LOGICAL-c428t-161bd10b590e9889a72c1a0a55330aa7c8ce3dfcaf75c6de9e59454d550eee1d3</originalsourceid><addsrcrecordid>eNqdkE1PwzAMhiMEEmNw4B9E4gKIjrhp-nFE0_gQ-zgA5ypNHJapW0rSTRq_nrJN4s7FluXH9uuXkEtgA2Apv4dBUgiexvyI9IBlWcQB8mPSY4zxKC0EnJKzEBZdKWLOe2Q9Rqkj4xHpZBVp16Cm169sIO6msos302rGaWPx22GNqvVW0XZuV9TYehmocZ5ORpO3qJKhG9zYysvWupWsKa7Qf27pXPoNhhY9lU1TW7Vrh3NyYmQd8OKQ--TjcfQ-fI7Gs6eX4cM4UkmctxGkUGlglSgYFnleyCxWIJkUgnMmZaZyhVwbJU0mVKqxQFEkItFCMEQEzfvkar-38e5r3ekoF27tO3mhjCGGDLozrKNu9pTyLgSPpmy8XUq_LYGVv66WUB5c7djbPRuUbXfP_A_eOP8Hlo02_AfBy4Th</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2121714280</pqid></control><display><type>article</type><title>Lead-free Mn-doped (K0.5,Na0.5)NbO3 piezoelectric thin films for MEMS-based vibrational energy harvester applications</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><source>AIP_美国物理联合会现刊(与NSTL共建)</source><creator>Won, Sung Sik ; Lee, Joonhee ; Venugopal, Vineeth ; Kim, Dong-Joo ; Lee, Jinkee ; Kim, Ill Won ; Kingon, Angus I. ; Kim, Seung-Hyun</creator><creatorcontrib>Won, Sung Sik ; Lee, Joonhee ; Venugopal, Vineeth ; Kim, Dong-Joo ; Lee, Jinkee ; Kim, Ill Won ; Kingon, Angus I. ; Kim, Seung-Hyun</creatorcontrib><description>Lead-free Mn-doped (K0.5, Na0.5)NbO3 (KNN) thin films were fabricated by the chemical solution deposition method. The addition of small concentration of Mn dopant effectively reduced the leakage current density and enhanced the piezoelectric properties of the films. The leakage current density of 0.5 mol. % Mn-doped KNN film showed the lowest value of ∼10-7 A/cm2 at 10 V compared to the films with other doping concentrations and the piezoelectric d33 and e31 coefficients of this film were ∼90 pm/V and −8.5 C/m2, respectively. The maximum power and power density of the lead-free thin film-based vibrational energy harvesting device were 3.62 μW and 1800 μW/cm3 at the resonance frequency of 132 Hz and the acceleration of 1.0 G. The results prove that the 0.5 mol. % Mn-doped KNN film is an attractive candidate transducer layer for the piezoelectric MEMS energy harvesting device applications with a small volume and a long-lasting power source.</description><identifier>ISSN: 0003-6951</identifier><identifier>EISSN: 1077-3118</identifier><identifier>DOI: 10.1063/1.4953623</identifier><identifier>CODEN: APPLAB</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Applied physics ; Current density ; Energy harvesting ; Lead free ; Leakage current ; Maximum power ; Microelectromechanical systems ; Niobates ; Organic chemistry ; Piezoelectricity ; Thin films</subject><ispartof>Applied physics letters, 2016-06, Vol.108 (23)</ispartof><rights>Author(s)</rights><rights>2016 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c428t-161bd10b590e9889a72c1a0a55330aa7c8ce3dfcaf75c6de9e59454d550eee1d3</citedby><cites>FETCH-LOGICAL-c428t-161bd10b590e9889a72c1a0a55330aa7c8ce3dfcaf75c6de9e59454d550eee1d3</cites><orcidid>0000-0003-1202-6606 ; 0000-0001-7130-0551</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/apl/article-lookup/doi/10.1063/1.4953623$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,780,782,784,795,27924,27925,76383</link.rule.ids></links><search><creatorcontrib>Won, Sung Sik</creatorcontrib><creatorcontrib>Lee, Joonhee</creatorcontrib><creatorcontrib>Venugopal, Vineeth</creatorcontrib><creatorcontrib>Kim, Dong-Joo</creatorcontrib><creatorcontrib>Lee, Jinkee</creatorcontrib><creatorcontrib>Kim, Ill Won</creatorcontrib><creatorcontrib>Kingon, Angus I.</creatorcontrib><creatorcontrib>Kim, Seung-Hyun</creatorcontrib><title>Lead-free Mn-doped (K0.5,Na0.5)NbO3 piezoelectric thin films for MEMS-based vibrational energy harvester applications</title><title>Applied physics letters</title><description>Lead-free Mn-doped (K0.5, Na0.5)NbO3 (KNN) thin films were fabricated by the chemical solution deposition method. The addition of small concentration of Mn dopant effectively reduced the leakage current density and enhanced the piezoelectric properties of the films. The leakage current density of 0.5 mol. % Mn-doped KNN film showed the lowest value of ∼10-7 A/cm2 at 10 V compared to the films with other doping concentrations and the piezoelectric d33 and e31 coefficients of this film were ∼90 pm/V and −8.5 C/m2, respectively. The maximum power and power density of the lead-free thin film-based vibrational energy harvesting device were 3.62 μW and 1800 μW/cm3 at the resonance frequency of 132 Hz and the acceleration of 1.0 G. The results prove that the 0.5 mol. % Mn-doped KNN film is an attractive candidate transducer layer for the piezoelectric MEMS energy harvesting device applications with a small volume and a long-lasting power source.</description><subject>Applied physics</subject><subject>Current density</subject><subject>Energy harvesting</subject><subject>Lead free</subject><subject>Leakage current</subject><subject>Maximum power</subject><subject>Microelectromechanical systems</subject><subject>Niobates</subject><subject>Organic chemistry</subject><subject>Piezoelectricity</subject><subject>Thin films</subject><issn>0003-6951</issn><issn>1077-3118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqdkE1PwzAMhiMEEmNw4B9E4gKIjrhp-nFE0_gQ-zgA5ypNHJapW0rSTRq_nrJN4s7FluXH9uuXkEtgA2Apv4dBUgiexvyI9IBlWcQB8mPSY4zxKC0EnJKzEBZdKWLOe2Q9Rqkj4xHpZBVp16Cm169sIO6msos302rGaWPx22GNqvVW0XZuV9TYehmocZ5ORpO3qJKhG9zYysvWupWsKa7Qf27pXPoNhhY9lU1TW7Vrh3NyYmQd8OKQ--TjcfQ-fI7Gs6eX4cM4UkmctxGkUGlglSgYFnleyCxWIJkUgnMmZaZyhVwbJU0mVKqxQFEkItFCMEQEzfvkar-38e5r3ekoF27tO3mhjCGGDLozrKNu9pTyLgSPpmy8XUq_LYGVv66WUB5c7djbPRuUbXfP_A_eOP8Hlo02_AfBy4Th</recordid><startdate>20160606</startdate><enddate>20160606</enddate><creator>Won, Sung Sik</creator><creator>Lee, Joonhee</creator><creator>Venugopal, Vineeth</creator><creator>Kim, Dong-Joo</creator><creator>Lee, Jinkee</creator><creator>Kim, Ill Won</creator><creator>Kingon, Angus I.</creator><creator>Kim, Seung-Hyun</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-1202-6606</orcidid><orcidid>https://orcid.org/0000-0001-7130-0551</orcidid></search><sort><creationdate>20160606</creationdate><title>Lead-free Mn-doped (K0.5,Na0.5)NbO3 piezoelectric thin films for MEMS-based vibrational energy harvester applications</title><author>Won, Sung Sik ; Lee, Joonhee ; Venugopal, Vineeth ; Kim, Dong-Joo ; Lee, Jinkee ; Kim, Ill Won ; Kingon, Angus I. ; Kim, Seung-Hyun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c428t-161bd10b590e9889a72c1a0a55330aa7c8ce3dfcaf75c6de9e59454d550eee1d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Applied physics</topic><topic>Current density</topic><topic>Energy harvesting</topic><topic>Lead free</topic><topic>Leakage current</topic><topic>Maximum power</topic><topic>Microelectromechanical systems</topic><topic>Niobates</topic><topic>Organic chemistry</topic><topic>Piezoelectricity</topic><topic>Thin films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Won, Sung Sik</creatorcontrib><creatorcontrib>Lee, Joonhee</creatorcontrib><creatorcontrib>Venugopal, Vineeth</creatorcontrib><creatorcontrib>Kim, Dong-Joo</creatorcontrib><creatorcontrib>Lee, Jinkee</creatorcontrib><creatorcontrib>Kim, Ill Won</creatorcontrib><creatorcontrib>Kingon, Angus I.</creatorcontrib><creatorcontrib>Kim, Seung-Hyun</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Applied physics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Won, Sung Sik</au><au>Lee, Joonhee</au><au>Venugopal, Vineeth</au><au>Kim, Dong-Joo</au><au>Lee, Jinkee</au><au>Kim, Ill Won</au><au>Kingon, Angus I.</au><au>Kim, Seung-Hyun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lead-free Mn-doped (K0.5,Na0.5)NbO3 piezoelectric thin films for MEMS-based vibrational energy harvester applications</atitle><jtitle>Applied physics letters</jtitle><date>2016-06-06</date><risdate>2016</risdate><volume>108</volume><issue>23</issue><issn>0003-6951</issn><eissn>1077-3118</eissn><coden>APPLAB</coden><abstract>Lead-free Mn-doped (K0.5, Na0.5)NbO3 (KNN) thin films were fabricated by the chemical solution deposition method. The addition of small concentration of Mn dopant effectively reduced the leakage current density and enhanced the piezoelectric properties of the films. The leakage current density of 0.5 mol. % Mn-doped KNN film showed the lowest value of ∼10-7 A/cm2 at 10 V compared to the films with other doping concentrations and the piezoelectric d33 and e31 coefficients of this film were ∼90 pm/V and −8.5 C/m2, respectively. The maximum power and power density of the lead-free thin film-based vibrational energy harvesting device were 3.62 μW and 1800 μW/cm3 at the resonance frequency of 132 Hz and the acceleration of 1.0 G. The results prove that the 0.5 mol. % Mn-doped KNN film is an attractive candidate transducer layer for the piezoelectric MEMS energy harvesting device applications with a small volume and a long-lasting power source.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.4953623</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0003-1202-6606</orcidid><orcidid>https://orcid.org/0000-0001-7130-0551</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-6951 |
ispartof | Applied physics letters, 2016-06, Vol.108 (23) |
issn | 0003-6951 1077-3118 |
language | eng |
recordid | cdi_proquest_journals_2121714280 |
source | American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list); AIP_美国物理联合会现刊(与NSTL共建) |
subjects | Applied physics Current density Energy harvesting Lead free Leakage current Maximum power Microelectromechanical systems Niobates Organic chemistry Piezoelectricity Thin films |
title | Lead-free Mn-doped (K0.5,Na0.5)NbO3 piezoelectric thin films for MEMS-based vibrational energy harvester applications |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T15%3A10%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lead-free%20Mn-doped%20(K0.5,Na0.5)NbO3%20piezoelectric%20thin%20films%20for%20MEMS-based%20vibrational%20energy%20harvester%20applications&rft.jtitle=Applied%20physics%20letters&rft.au=Won,%20Sung%20Sik&rft.date=2016-06-06&rft.volume=108&rft.issue=23&rft.issn=0003-6951&rft.eissn=1077-3118&rft.coden=APPLAB&rft_id=info:doi/10.1063/1.4953623&rft_dat=%3Cproquest_cross%3E2121714280%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c428t-161bd10b590e9889a72c1a0a55330aa7c8ce3dfcaf75c6de9e59454d550eee1d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2121714280&rft_id=info:pmid/&rfr_iscdi=true |