Loading…

Lead-free Mn-doped (K0.5,Na0.5)NbO3 piezoelectric thin films for MEMS-based vibrational energy harvester applications

Lead-free Mn-doped (K0.5, Na0.5)NbO3 (KNN) thin films were fabricated by the chemical solution deposition method. The addition of small concentration of Mn dopant effectively reduced the leakage current density and enhanced the piezoelectric properties of the films. The leakage current density of 0....

Full description

Saved in:
Bibliographic Details
Published in:Applied physics letters 2016-06, Vol.108 (23)
Main Authors: Won, Sung Sik, Lee, Joonhee, Venugopal, Vineeth, Kim, Dong-Joo, Lee, Jinkee, Kim, Ill Won, Kingon, Angus I., Kim, Seung-Hyun
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c428t-161bd10b590e9889a72c1a0a55330aa7c8ce3dfcaf75c6de9e59454d550eee1d3
cites cdi_FETCH-LOGICAL-c428t-161bd10b590e9889a72c1a0a55330aa7c8ce3dfcaf75c6de9e59454d550eee1d3
container_end_page
container_issue 23
container_start_page
container_title Applied physics letters
container_volume 108
creator Won, Sung Sik
Lee, Joonhee
Venugopal, Vineeth
Kim, Dong-Joo
Lee, Jinkee
Kim, Ill Won
Kingon, Angus I.
Kim, Seung-Hyun
description Lead-free Mn-doped (K0.5, Na0.5)NbO3 (KNN) thin films were fabricated by the chemical solution deposition method. The addition of small concentration of Mn dopant effectively reduced the leakage current density and enhanced the piezoelectric properties of the films. The leakage current density of 0.5 mol. % Mn-doped KNN film showed the lowest value of ∼10-7 A/cm2 at 10 V compared to the films with other doping concentrations and the piezoelectric d33 and e31 coefficients of this film were ∼90 pm/V and −8.5 C/m2, respectively. The maximum power and power density of the lead-free thin film-based vibrational energy harvesting device were 3.62 μW and 1800 μW/cm3 at the resonance frequency of 132 Hz and the acceleration of 1.0 G. The results prove that the 0.5 mol. % Mn-doped KNN film is an attractive candidate transducer layer for the piezoelectric MEMS energy harvesting device applications with a small volume and a long-lasting power source.
doi_str_mv 10.1063/1.4953623
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2121714280</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2121714280</sourcerecordid><originalsourceid>FETCH-LOGICAL-c428t-161bd10b590e9889a72c1a0a55330aa7c8ce3dfcaf75c6de9e59454d550eee1d3</originalsourceid><addsrcrecordid>eNqdkE1PwzAMhiMEEmNw4B9E4gKIjrhp-nFE0_gQ-zgA5ypNHJapW0rSTRq_nrJN4s7FluXH9uuXkEtgA2Apv4dBUgiexvyI9IBlWcQB8mPSY4zxKC0EnJKzEBZdKWLOe2Q9Rqkj4xHpZBVp16Cm169sIO6msos302rGaWPx22GNqvVW0XZuV9TYehmocZ5ORpO3qJKhG9zYysvWupWsKa7Qf27pXPoNhhY9lU1TW7Vrh3NyYmQd8OKQ--TjcfQ-fI7Gs6eX4cM4UkmctxGkUGlglSgYFnleyCxWIJkUgnMmZaZyhVwbJU0mVKqxQFEkItFCMEQEzfvkar-38e5r3ekoF27tO3mhjCGGDLozrKNu9pTyLgSPpmy8XUq_LYGVv66WUB5c7djbPRuUbXfP_A_eOP8Hlo02_AfBy4Th</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2121714280</pqid></control><display><type>article</type><title>Lead-free Mn-doped (K0.5,Na0.5)NbO3 piezoelectric thin films for MEMS-based vibrational energy harvester applications</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><source>AIP_美国物理联合会现刊(与NSTL共建)</source><creator>Won, Sung Sik ; Lee, Joonhee ; Venugopal, Vineeth ; Kim, Dong-Joo ; Lee, Jinkee ; Kim, Ill Won ; Kingon, Angus I. ; Kim, Seung-Hyun</creator><creatorcontrib>Won, Sung Sik ; Lee, Joonhee ; Venugopal, Vineeth ; Kim, Dong-Joo ; Lee, Jinkee ; Kim, Ill Won ; Kingon, Angus I. ; Kim, Seung-Hyun</creatorcontrib><description>Lead-free Mn-doped (K0.5, Na0.5)NbO3 (KNN) thin films were fabricated by the chemical solution deposition method. The addition of small concentration of Mn dopant effectively reduced the leakage current density and enhanced the piezoelectric properties of the films. The leakage current density of 0.5 mol. % Mn-doped KNN film showed the lowest value of ∼10-7 A/cm2 at 10 V compared to the films with other doping concentrations and the piezoelectric d33 and e31 coefficients of this film were ∼90 pm/V and −8.5 C/m2, respectively. The maximum power and power density of the lead-free thin film-based vibrational energy harvesting device were 3.62 μW and 1800 μW/cm3 at the resonance frequency of 132 Hz and the acceleration of 1.0 G. The results prove that the 0.5 mol. % Mn-doped KNN film is an attractive candidate transducer layer for the piezoelectric MEMS energy harvesting device applications with a small volume and a long-lasting power source.</description><identifier>ISSN: 0003-6951</identifier><identifier>EISSN: 1077-3118</identifier><identifier>DOI: 10.1063/1.4953623</identifier><identifier>CODEN: APPLAB</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Applied physics ; Current density ; Energy harvesting ; Lead free ; Leakage current ; Maximum power ; Microelectromechanical systems ; Niobates ; Organic chemistry ; Piezoelectricity ; Thin films</subject><ispartof>Applied physics letters, 2016-06, Vol.108 (23)</ispartof><rights>Author(s)</rights><rights>2016 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c428t-161bd10b590e9889a72c1a0a55330aa7c8ce3dfcaf75c6de9e59454d550eee1d3</citedby><cites>FETCH-LOGICAL-c428t-161bd10b590e9889a72c1a0a55330aa7c8ce3dfcaf75c6de9e59454d550eee1d3</cites><orcidid>0000-0003-1202-6606 ; 0000-0001-7130-0551</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/apl/article-lookup/doi/10.1063/1.4953623$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,780,782,784,795,27924,27925,76383</link.rule.ids></links><search><creatorcontrib>Won, Sung Sik</creatorcontrib><creatorcontrib>Lee, Joonhee</creatorcontrib><creatorcontrib>Venugopal, Vineeth</creatorcontrib><creatorcontrib>Kim, Dong-Joo</creatorcontrib><creatorcontrib>Lee, Jinkee</creatorcontrib><creatorcontrib>Kim, Ill Won</creatorcontrib><creatorcontrib>Kingon, Angus I.</creatorcontrib><creatorcontrib>Kim, Seung-Hyun</creatorcontrib><title>Lead-free Mn-doped (K0.5,Na0.5)NbO3 piezoelectric thin films for MEMS-based vibrational energy harvester applications</title><title>Applied physics letters</title><description>Lead-free Mn-doped (K0.5, Na0.5)NbO3 (KNN) thin films were fabricated by the chemical solution deposition method. The addition of small concentration of Mn dopant effectively reduced the leakage current density and enhanced the piezoelectric properties of the films. The leakage current density of 0.5 mol. % Mn-doped KNN film showed the lowest value of ∼10-7 A/cm2 at 10 V compared to the films with other doping concentrations and the piezoelectric d33 and e31 coefficients of this film were ∼90 pm/V and −8.5 C/m2, respectively. The maximum power and power density of the lead-free thin film-based vibrational energy harvesting device were 3.62 μW and 1800 μW/cm3 at the resonance frequency of 132 Hz and the acceleration of 1.0 G. The results prove that the 0.5 mol. % Mn-doped KNN film is an attractive candidate transducer layer for the piezoelectric MEMS energy harvesting device applications with a small volume and a long-lasting power source.</description><subject>Applied physics</subject><subject>Current density</subject><subject>Energy harvesting</subject><subject>Lead free</subject><subject>Leakage current</subject><subject>Maximum power</subject><subject>Microelectromechanical systems</subject><subject>Niobates</subject><subject>Organic chemistry</subject><subject>Piezoelectricity</subject><subject>Thin films</subject><issn>0003-6951</issn><issn>1077-3118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqdkE1PwzAMhiMEEmNw4B9E4gKIjrhp-nFE0_gQ-zgA5ypNHJapW0rSTRq_nrJN4s7FluXH9uuXkEtgA2Apv4dBUgiexvyI9IBlWcQB8mPSY4zxKC0EnJKzEBZdKWLOe2Q9Rqkj4xHpZBVp16Cm169sIO6msos302rGaWPx22GNqvVW0XZuV9TYehmocZ5ORpO3qJKhG9zYysvWupWsKa7Qf27pXPoNhhY9lU1TW7Vrh3NyYmQd8OKQ--TjcfQ-fI7Gs6eX4cM4UkmctxGkUGlglSgYFnleyCxWIJkUgnMmZaZyhVwbJU0mVKqxQFEkItFCMEQEzfvkar-38e5r3ekoF27tO3mhjCGGDLozrKNu9pTyLgSPpmy8XUq_LYGVv66WUB5c7djbPRuUbXfP_A_eOP8Hlo02_AfBy4Th</recordid><startdate>20160606</startdate><enddate>20160606</enddate><creator>Won, Sung Sik</creator><creator>Lee, Joonhee</creator><creator>Venugopal, Vineeth</creator><creator>Kim, Dong-Joo</creator><creator>Lee, Jinkee</creator><creator>Kim, Ill Won</creator><creator>Kingon, Angus I.</creator><creator>Kim, Seung-Hyun</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-1202-6606</orcidid><orcidid>https://orcid.org/0000-0001-7130-0551</orcidid></search><sort><creationdate>20160606</creationdate><title>Lead-free Mn-doped (K0.5,Na0.5)NbO3 piezoelectric thin films for MEMS-based vibrational energy harvester applications</title><author>Won, Sung Sik ; Lee, Joonhee ; Venugopal, Vineeth ; Kim, Dong-Joo ; Lee, Jinkee ; Kim, Ill Won ; Kingon, Angus I. ; Kim, Seung-Hyun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c428t-161bd10b590e9889a72c1a0a55330aa7c8ce3dfcaf75c6de9e59454d550eee1d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Applied physics</topic><topic>Current density</topic><topic>Energy harvesting</topic><topic>Lead free</topic><topic>Leakage current</topic><topic>Maximum power</topic><topic>Microelectromechanical systems</topic><topic>Niobates</topic><topic>Organic chemistry</topic><topic>Piezoelectricity</topic><topic>Thin films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Won, Sung Sik</creatorcontrib><creatorcontrib>Lee, Joonhee</creatorcontrib><creatorcontrib>Venugopal, Vineeth</creatorcontrib><creatorcontrib>Kim, Dong-Joo</creatorcontrib><creatorcontrib>Lee, Jinkee</creatorcontrib><creatorcontrib>Kim, Ill Won</creatorcontrib><creatorcontrib>Kingon, Angus I.</creatorcontrib><creatorcontrib>Kim, Seung-Hyun</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Applied physics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Won, Sung Sik</au><au>Lee, Joonhee</au><au>Venugopal, Vineeth</au><au>Kim, Dong-Joo</au><au>Lee, Jinkee</au><au>Kim, Ill Won</au><au>Kingon, Angus I.</au><au>Kim, Seung-Hyun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lead-free Mn-doped (K0.5,Na0.5)NbO3 piezoelectric thin films for MEMS-based vibrational energy harvester applications</atitle><jtitle>Applied physics letters</jtitle><date>2016-06-06</date><risdate>2016</risdate><volume>108</volume><issue>23</issue><issn>0003-6951</issn><eissn>1077-3118</eissn><coden>APPLAB</coden><abstract>Lead-free Mn-doped (K0.5, Na0.5)NbO3 (KNN) thin films were fabricated by the chemical solution deposition method. The addition of small concentration of Mn dopant effectively reduced the leakage current density and enhanced the piezoelectric properties of the films. The leakage current density of 0.5 mol. % Mn-doped KNN film showed the lowest value of ∼10-7 A/cm2 at 10 V compared to the films with other doping concentrations and the piezoelectric d33 and e31 coefficients of this film were ∼90 pm/V and −8.5 C/m2, respectively. The maximum power and power density of the lead-free thin film-based vibrational energy harvesting device were 3.62 μW and 1800 μW/cm3 at the resonance frequency of 132 Hz and the acceleration of 1.0 G. The results prove that the 0.5 mol. % Mn-doped KNN film is an attractive candidate transducer layer for the piezoelectric MEMS energy harvesting device applications with a small volume and a long-lasting power source.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.4953623</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0003-1202-6606</orcidid><orcidid>https://orcid.org/0000-0001-7130-0551</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0003-6951
ispartof Applied physics letters, 2016-06, Vol.108 (23)
issn 0003-6951
1077-3118
language eng
recordid cdi_proquest_journals_2121714280
source American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list); AIP_美国物理联合会现刊(与NSTL共建)
subjects Applied physics
Current density
Energy harvesting
Lead free
Leakage current
Maximum power
Microelectromechanical systems
Niobates
Organic chemistry
Piezoelectricity
Thin films
title Lead-free Mn-doped (K0.5,Na0.5)NbO3 piezoelectric thin films for MEMS-based vibrational energy harvester applications
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T15%3A10%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lead-free%20Mn-doped%20(K0.5,Na0.5)NbO3%20piezoelectric%20thin%20films%20for%20MEMS-based%20vibrational%20energy%20harvester%20applications&rft.jtitle=Applied%20physics%20letters&rft.au=Won,%20Sung%20Sik&rft.date=2016-06-06&rft.volume=108&rft.issue=23&rft.issn=0003-6951&rft.eissn=1077-3118&rft.coden=APPLAB&rft_id=info:doi/10.1063/1.4953623&rft_dat=%3Cproquest_cross%3E2121714280%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c428t-161bd10b590e9889a72c1a0a55330aa7c8ce3dfcaf75c6de9e59454d550eee1d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2121714280&rft_id=info:pmid/&rfr_iscdi=true