Loading…
Stoichiometry as key to ferroelectricity in compressively strained SrTiO3 films
While strain is a powerful tuning parameter for inducing ferroelectricity in thin film oxides, the role of stoichiometry control is critical, but far less explored. A series of compressively strained SrTiO3 films on (001) (LaAlO3)0.3(Sr2AlTaO6)0.35 substrates were grown by hybrid molecular beam epit...
Saved in:
Published in: | Applied physics letters 2016-07, Vol.109 (3) |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | While strain is a powerful tuning parameter for inducing ferroelectricity in thin film oxides, the role of stoichiometry control is critical, but far less explored. A series of compressively strained SrTiO3 films on (001) (LaAlO3)0.3(Sr2AlTaO6)0.35 substrates were grown by hybrid molecular beam epitaxy where the Ti cation was supplied using a metal-organic titanium tetraisopropoxide molecule that helps systematically and precisely control Sr:Ti stoichiometry in the resulting films. A stoichiometric growth window is located through X-ray diffraction and in-situ reflection high-energy electron diffraction measurements, which show a minimum out-of-plane lattice parameter as well as constant growth rate within the stoichiometric growth window range. Using temperature dependent optical second harmonic generation (SHG) characterization, a ferroelectric-to-paraelectric transition at T ∼ 180 K is observed for a stoichiometric SrTiO3 film, as well as a higher temperature structural transition at T ∼ 385 K. Using SHG polarimetry modeling, the polar point group symmetry is determined to be tetragonal 4mm with the polarization pointing out-of-plane of the film. The SHG coefficients, d
31/d
15=3 and d
33/d
15=21, were determined at 298 K. The ferroelectric transition disappears in films grown outside the growth window, thus proving the critical role of stoichiometry control in realizing strain-induced ferroelectricity. |
---|---|
ISSN: | 0003-6951 1077-3118 |
DOI: | 10.1063/1.4959077 |