Loading…

Fast and accurate predictions of covalent bonds in chemical space

We assess the predictive accuracy of perturbation theory based estimates of changes in covalent bonding due to linear alchemical interpolations among molecules. We have investigated σ bonding to hydrogen, as well as σ and π bonding between main-group elements, occurring in small sets of iso-valence-...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of chemical physics 2016-05, Vol.144 (17), p.174110-174110
Main Authors: Chang, K. Y. Samuel, Fias, Stijn, Ramakrishnan, Raghunathan, von Lilienfeld, O. Anatole
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c484t-237dd205919b1fad74d203bdb53e9082abd0a39722b189dd424192de8e358a8f3
cites cdi_FETCH-LOGICAL-c484t-237dd205919b1fad74d203bdb53e9082abd0a39722b189dd424192de8e358a8f3
container_end_page 174110
container_issue 17
container_start_page 174110
container_title The Journal of chemical physics
container_volume 144
creator Chang, K. Y. Samuel
Fias, Stijn
Ramakrishnan, Raghunathan
von Lilienfeld, O. Anatole
description We assess the predictive accuracy of perturbation theory based estimates of changes in covalent bonding due to linear alchemical interpolations among molecules. We have investigated σ bonding to hydrogen, as well as σ and π bonding between main-group elements, occurring in small sets of iso-valence-electronic molecules with elements drawn from second to fourth rows in the p-block of the periodic table. Numerical evidence suggests that first order Taylor expansions of covalent bonding potentials can achieve high accuracy if (i) the alchemical interpolation is vertical (fixed geometry), (ii) it involves elements from the third and fourth rows of the periodic table, and (iii) an optimal reference geometry is used. This leads to near linear changes in the bonding potential, resulting in analytical predictions with chemical accuracy (∼1 kcal/mol). Second order estimates deteriorate the prediction. If initial and final molecules differ not only in composition but also in geometry, all estimates become substantially worse, with second order being slightly more accurate than first order. The independent particle approximation based second order perturbation theory performs poorly when compared to the coupled perturbed or finite difference approach. Taylor series expansions up to fourth order of the potential energy curve of highly symmetric systems indicate a finite radius of convergence, as illustrated for the alchemical stretching of H 2 + . Results are presented for (i) covalent bonds to hydrogen in 12 molecules with 8 valence electrons (CH4, NH3, H2O, HF, SiH4, PH3, H2S, HCl, GeH4, AsH3, H2Se, HBr); (ii) main-group single bonds in 9 molecules with 14 valence electrons (CH3F, CH3Cl, CH3Br, SiH3F, SiH3Cl, SiH3Br, GeH3F, GeH3Cl, GeH3Br); (iii) main-group double bonds in 9 molecules with 12 valence electrons (CH2O, CH2S, CH2Se, SiH2O, SiH2S, SiH2Se, GeH2O, GeH2S, GeH2Se); (iv) main-group triple bonds in 9 molecules with 10 valence electrons (HCN, HCP, HCAs, HSiN, HSiP, HSiAs, HGeN, HGeP, HGeAs); and (v) H 2 + single bond with 1 electron.
doi_str_mv 10.1063/1.4947217
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2121775672</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1787937403</sourcerecordid><originalsourceid>FETCH-LOGICAL-c484t-237dd205919b1fad74d203bdb53e9082abd0a39722b189dd424192de8e358a8f3</originalsourceid><addsrcrecordid>eNp90EtLxDAUhuEgijNeFv4BCbhRoWNOkjbJchi8geBG1yFNUqy0TU3aAf-9lRkVBF2FwMPH4UXoBMgCSMGuYMEVFxTEDpoDkSoThSK7aE4IhUwVpJihg5ReCSEgKN9HMyogzwsq52h5Y9KATeewsXaMZvC4j97VdqhDl3CosA1r0_huwGXoXMJ1h-2Lb2trGpx6Y_0R2qtMk_zx9j1EzzfXT6u77OHx9n61fMgsl3zIKBPOUZIrUCVUxgk-_Vjpypx5RSQ1pSOGKUFpCVI5xykHRZ2XnuXSyIodovPNbh_D2-jToNs6Wd80pvNhTBqEFIoJTthEz37R1zDGbrpOU5gyibwQdFIXG2VjSCn6Svexbk1810D0Z1cNett1sqfbxbFsvfuWXyEncLkBydaD-Yz379qfeB3iD9S9q9gHtAyMOA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2121775672</pqid></control><display><type>article</type><title>Fast and accurate predictions of covalent bonds in chemical space</title><source>American Institute of Physics (AIP) Publications</source><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><creator>Chang, K. Y. Samuel ; Fias, Stijn ; Ramakrishnan, Raghunathan ; von Lilienfeld, O. Anatole</creator><creatorcontrib>Chang, K. Y. Samuel ; Fias, Stijn ; Ramakrishnan, Raghunathan ; von Lilienfeld, O. Anatole</creatorcontrib><description>We assess the predictive accuracy of perturbation theory based estimates of changes in covalent bonding due to linear alchemical interpolations among molecules. We have investigated σ bonding to hydrogen, as well as σ and π bonding between main-group elements, occurring in small sets of iso-valence-electronic molecules with elements drawn from second to fourth rows in the p-block of the periodic table. Numerical evidence suggests that first order Taylor expansions of covalent bonding potentials can achieve high accuracy if (i) the alchemical interpolation is vertical (fixed geometry), (ii) it involves elements from the third and fourth rows of the periodic table, and (iii) an optimal reference geometry is used. This leads to near linear changes in the bonding potential, resulting in analytical predictions with chemical accuracy (∼1 kcal/mol). Second order estimates deteriorate the prediction. If initial and final molecules differ not only in composition but also in geometry, all estimates become substantially worse, with second order being slightly more accurate than first order. The independent particle approximation based second order perturbation theory performs poorly when compared to the coupled perturbed or finite difference approach. Taylor series expansions up to fourth order of the potential energy curve of highly symmetric systems indicate a finite radius of convergence, as illustrated for the alchemical stretching of H 2 + . Results are presented for (i) covalent bonds to hydrogen in 12 molecules with 8 valence electrons (CH4, NH3, H2O, HF, SiH4, PH3, H2S, HCl, GeH4, AsH3, H2Se, HBr); (ii) main-group single bonds in 9 molecules with 14 valence electrons (CH3F, CH3Cl, CH3Br, SiH3F, SiH3Cl, SiH3Br, GeH3F, GeH3Cl, GeH3Br); (iii) main-group double bonds in 9 molecules with 12 valence electrons (CH2O, CH2S, CH2Se, SiH2O, SiH2S, SiH2Se, GeH2O, GeH2S, GeH2Se); (iv) main-group triple bonds in 9 molecules with 10 valence electrons (HCN, HCP, HCAs, HSiN, HSiP, HSiAs, HGeN, HGeP, HGeAs); and (v) H 2 + single bond with 1 electron.</description><identifier>ISSN: 0021-9606</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/1.4947217</identifier><identifier>PMID: 27155628</identifier><identifier>CODEN: JCPSA6</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>Accuracy ; Ammonia ; Chemical bonds ; Covalence ; Covalent bonds ; Electrons ; Estimates ; Finite difference method ; Geometry ; Hydrogen sulfide ; Interpolation ; Methyl bromide ; Organic chemistry ; Periodic table ; Perturbation methods ; Perturbation theory ; Physics ; Potential energy ; Predictions ; Taylor series</subject><ispartof>The Journal of chemical physics, 2016-05, Vol.144 (17), p.174110-174110</ispartof><rights>Author(s)</rights><rights>2016 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c484t-237dd205919b1fad74d203bdb53e9082abd0a39722b189dd424192de8e358a8f3</citedby><cites>FETCH-LOGICAL-c484t-237dd205919b1fad74d203bdb53e9082abd0a39722b189dd424192de8e358a8f3</cites><orcidid>0000-0003-1256-2396</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jcp/article-lookup/doi/10.1063/1.4947217$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,780,782,784,795,27924,27925,76383</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27155628$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chang, K. Y. Samuel</creatorcontrib><creatorcontrib>Fias, Stijn</creatorcontrib><creatorcontrib>Ramakrishnan, Raghunathan</creatorcontrib><creatorcontrib>von Lilienfeld, O. Anatole</creatorcontrib><title>Fast and accurate predictions of covalent bonds in chemical space</title><title>The Journal of chemical physics</title><addtitle>J Chem Phys</addtitle><description>We assess the predictive accuracy of perturbation theory based estimates of changes in covalent bonding due to linear alchemical interpolations among molecules. We have investigated σ bonding to hydrogen, as well as σ and π bonding between main-group elements, occurring in small sets of iso-valence-electronic molecules with elements drawn from second to fourth rows in the p-block of the periodic table. Numerical evidence suggests that first order Taylor expansions of covalent bonding potentials can achieve high accuracy if (i) the alchemical interpolation is vertical (fixed geometry), (ii) it involves elements from the third and fourth rows of the periodic table, and (iii) an optimal reference geometry is used. This leads to near linear changes in the bonding potential, resulting in analytical predictions with chemical accuracy (∼1 kcal/mol). Second order estimates deteriorate the prediction. If initial and final molecules differ not only in composition but also in geometry, all estimates become substantially worse, with second order being slightly more accurate than first order. The independent particle approximation based second order perturbation theory performs poorly when compared to the coupled perturbed or finite difference approach. Taylor series expansions up to fourth order of the potential energy curve of highly symmetric systems indicate a finite radius of convergence, as illustrated for the alchemical stretching of H 2 + . Results are presented for (i) covalent bonds to hydrogen in 12 molecules with 8 valence electrons (CH4, NH3, H2O, HF, SiH4, PH3, H2S, HCl, GeH4, AsH3, H2Se, HBr); (ii) main-group single bonds in 9 molecules with 14 valence electrons (CH3F, CH3Cl, CH3Br, SiH3F, SiH3Cl, SiH3Br, GeH3F, GeH3Cl, GeH3Br); (iii) main-group double bonds in 9 molecules with 12 valence electrons (CH2O, CH2S, CH2Se, SiH2O, SiH2S, SiH2Se, GeH2O, GeH2S, GeH2Se); (iv) main-group triple bonds in 9 molecules with 10 valence electrons (HCN, HCP, HCAs, HSiN, HSiP, HSiAs, HGeN, HGeP, HGeAs); and (v) H 2 + single bond with 1 electron.</description><subject>Accuracy</subject><subject>Ammonia</subject><subject>Chemical bonds</subject><subject>Covalence</subject><subject>Covalent bonds</subject><subject>Electrons</subject><subject>Estimates</subject><subject>Finite difference method</subject><subject>Geometry</subject><subject>Hydrogen sulfide</subject><subject>Interpolation</subject><subject>Methyl bromide</subject><subject>Organic chemistry</subject><subject>Periodic table</subject><subject>Perturbation methods</subject><subject>Perturbation theory</subject><subject>Physics</subject><subject>Potential energy</subject><subject>Predictions</subject><subject>Taylor series</subject><issn>0021-9606</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp90EtLxDAUhuEgijNeFv4BCbhRoWNOkjbJchi8geBG1yFNUqy0TU3aAf-9lRkVBF2FwMPH4UXoBMgCSMGuYMEVFxTEDpoDkSoThSK7aE4IhUwVpJihg5ReCSEgKN9HMyogzwsq52h5Y9KATeewsXaMZvC4j97VdqhDl3CosA1r0_huwGXoXMJ1h-2Lb2trGpx6Y_0R2qtMk_zx9j1EzzfXT6u77OHx9n61fMgsl3zIKBPOUZIrUCVUxgk-_Vjpypx5RSQ1pSOGKUFpCVI5xykHRZ2XnuXSyIodovPNbh_D2-jToNs6Wd80pvNhTBqEFIoJTthEz37R1zDGbrpOU5gyibwQdFIXG2VjSCn6Svexbk1810D0Z1cNett1sqfbxbFsvfuWXyEncLkBydaD-Yz379qfeB3iD9S9q9gHtAyMOA</recordid><startdate>20160507</startdate><enddate>20160507</enddate><creator>Chang, K. Y. Samuel</creator><creator>Fias, Stijn</creator><creator>Ramakrishnan, Raghunathan</creator><creator>von Lilienfeld, O. Anatole</creator><general>American Institute of Physics</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-1256-2396</orcidid></search><sort><creationdate>20160507</creationdate><title>Fast and accurate predictions of covalent bonds in chemical space</title><author>Chang, K. Y. Samuel ; Fias, Stijn ; Ramakrishnan, Raghunathan ; von Lilienfeld, O. Anatole</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c484t-237dd205919b1fad74d203bdb53e9082abd0a39722b189dd424192de8e358a8f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Accuracy</topic><topic>Ammonia</topic><topic>Chemical bonds</topic><topic>Covalence</topic><topic>Covalent bonds</topic><topic>Electrons</topic><topic>Estimates</topic><topic>Finite difference method</topic><topic>Geometry</topic><topic>Hydrogen sulfide</topic><topic>Interpolation</topic><topic>Methyl bromide</topic><topic>Organic chemistry</topic><topic>Periodic table</topic><topic>Perturbation methods</topic><topic>Perturbation theory</topic><topic>Physics</topic><topic>Potential energy</topic><topic>Predictions</topic><topic>Taylor series</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chang, K. Y. Samuel</creatorcontrib><creatorcontrib>Fias, Stijn</creatorcontrib><creatorcontrib>Ramakrishnan, Raghunathan</creatorcontrib><creatorcontrib>von Lilienfeld, O. Anatole</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chang, K. Y. Samuel</au><au>Fias, Stijn</au><au>Ramakrishnan, Raghunathan</au><au>von Lilienfeld, O. Anatole</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fast and accurate predictions of covalent bonds in chemical space</atitle><jtitle>The Journal of chemical physics</jtitle><addtitle>J Chem Phys</addtitle><date>2016-05-07</date><risdate>2016</risdate><volume>144</volume><issue>17</issue><spage>174110</spage><epage>174110</epage><pages>174110-174110</pages><issn>0021-9606</issn><eissn>1089-7690</eissn><coden>JCPSA6</coden><abstract>We assess the predictive accuracy of perturbation theory based estimates of changes in covalent bonding due to linear alchemical interpolations among molecules. We have investigated σ bonding to hydrogen, as well as σ and π bonding between main-group elements, occurring in small sets of iso-valence-electronic molecules with elements drawn from second to fourth rows in the p-block of the periodic table. Numerical evidence suggests that first order Taylor expansions of covalent bonding potentials can achieve high accuracy if (i) the alchemical interpolation is vertical (fixed geometry), (ii) it involves elements from the third and fourth rows of the periodic table, and (iii) an optimal reference geometry is used. This leads to near linear changes in the bonding potential, resulting in analytical predictions with chemical accuracy (∼1 kcal/mol). Second order estimates deteriorate the prediction. If initial and final molecules differ not only in composition but also in geometry, all estimates become substantially worse, with second order being slightly more accurate than first order. The independent particle approximation based second order perturbation theory performs poorly when compared to the coupled perturbed or finite difference approach. Taylor series expansions up to fourth order of the potential energy curve of highly symmetric systems indicate a finite radius of convergence, as illustrated for the alchemical stretching of H 2 + . Results are presented for (i) covalent bonds to hydrogen in 12 molecules with 8 valence electrons (CH4, NH3, H2O, HF, SiH4, PH3, H2S, HCl, GeH4, AsH3, H2Se, HBr); (ii) main-group single bonds in 9 molecules with 14 valence electrons (CH3F, CH3Cl, CH3Br, SiH3F, SiH3Cl, SiH3Br, GeH3F, GeH3Cl, GeH3Br); (iii) main-group double bonds in 9 molecules with 12 valence electrons (CH2O, CH2S, CH2Se, SiH2O, SiH2S, SiH2Se, GeH2O, GeH2S, GeH2Se); (iv) main-group triple bonds in 9 molecules with 10 valence electrons (HCN, HCP, HCAs, HSiN, HSiP, HSiAs, HGeN, HGeP, HGeAs); and (v) H 2 + single bond with 1 electron.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>27155628</pmid><doi>10.1063/1.4947217</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-1256-2396</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9606
ispartof The Journal of chemical physics, 2016-05, Vol.144 (17), p.174110-174110
issn 0021-9606
1089-7690
language eng
recordid cdi_proquest_journals_2121775672
source American Institute of Physics (AIP) Publications; American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)
subjects Accuracy
Ammonia
Chemical bonds
Covalence
Covalent bonds
Electrons
Estimates
Finite difference method
Geometry
Hydrogen sulfide
Interpolation
Methyl bromide
Organic chemistry
Periodic table
Perturbation methods
Perturbation theory
Physics
Potential energy
Predictions
Taylor series
title Fast and accurate predictions of covalent bonds in chemical space
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T22%3A46%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fast%20and%20accurate%20predictions%20of%20covalent%20bonds%20in%20chemical%20space&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=Chang,%20K.%20Y.%20Samuel&rft.date=2016-05-07&rft.volume=144&rft.issue=17&rft.spage=174110&rft.epage=174110&rft.pages=174110-174110&rft.issn=0021-9606&rft.eissn=1089-7690&rft.coden=JCPSA6&rft_id=info:doi/10.1063/1.4947217&rft_dat=%3Cproquest_cross%3E1787937403%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c484t-237dd205919b1fad74d203bdb53e9082abd0a39722b189dd424192de8e358a8f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2121775672&rft_id=info:pmid/27155628&rfr_iscdi=true