Loading…

Enhancement of Raman scattering signal of a few molecules using photonic nanojet mediated SERS technique

Now a days, single molecule surface enhanced Raman spectroscopy (SMSERS) has become a fascinating tool for studying the structural properties, static and dynamic events of single molecules (instead of ensemble average), with the help of efficient plasmonic nanostructures. This is extremely useful in...

Full description

Saved in:
Bibliographic Details
Main Authors: Das, G. M., Parit, M. K., Laha, R., Dantham, V. R.
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Now a days, single molecule surface enhanced Raman spectroscopy (SMSERS) has become a fascinating tool for studying the structural properties, static and dynamic events of single molecules (instead of ensemble average), with the help of efficient plasmonic nanostructures. This is extremely useful in the field of proteomics because the structural properties of protein molecules are heterogeneous. Even though, SMSERS provides wealthy information about single molecules, it demands high quality surface enhanced Raman scattering (SERS) substrates. So far, a very few researchers succeeded in demonstrating the single molecule Raman scattering using conventional SERS technique. However, the experimental S/N of the Raman signal has been found to be very poor. Recently, with the help of photonic nanojet of an optical microsphere, we were able to enhance the SERS signal of a few molecules adsorbed on the SERS substrates (gold symmetric and asymmetric nanodimers and trimers dispersed on a glass slide). Herein, we report a few details about photonic nanojet mediated SERS technique, a few experimental results and a detailed theoretical study on symmetric and asymmetric nanosphere dimers to understand the dependence of localised surface plasmon resonance (LSPR) wavelength of a nanodimer on the nanogap size and polarization of the excitation light.
ISSN:0094-243X
1551-7616
DOI:10.1063/1.4946615