Loading…
Interfacial reactions and wetting in Al-Mg sintered by powder metallurgy process
Was conducted to analyze the effect of temperature variation on the bonding interface sintered composite Al-Mg and analyze the effect of variations of the density and hardness sinter. Research carried out by the base material powders of Al, Mg powder and solvent n-butanol. The method used in this st...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Was conducted to analyze the effect of temperature variation on the bonding interface sintered composite Al-Mg and analyze the effect of variations of the density and hardness sinter. Research carried out by the base material powders of Al, Mg powder and solvent n-butanol. The method used in this study is a powder metallurgy, with a composition of 60% volume fraction of Al - 40% Mg. Al-Mg mixing with n-butanol for 1 hour at 500 rpm. Then the emphasis (cold comression) with a size of 1.4 cm in diameter dies and height of 2.8 cm, is pressed with a force of 20 MPa and held for 15 minutes. After the sample into pellets, then sintered at various temperatures 300 °C, 350 °C, 400 °C and 450 °C. Characterization is done by using the testing green density, sintered density, X-ray diffraction (XRD), Scanning Electron Microscopy (SEM), vickers microhardness, and press test. XRD data analysis done by using X’Pert High Score Plus (HSP) to determine whether there is a new phase is formed. Test results show that the sintered density increasing sintering temperature, the resulting density is also increasing (shrinkage). However, at a temperature of 450 °C decreased (swelling). With the increased sinter density, interfacial bonding getting Kuta and more compact so that its hardness is also increased. From the test results of SEM / EDX, there Mg into Al in the border area. At temperatures of 300 °C, 350 °C, 400 °C, the phase formed is Al, Mg and MgO. While phase is formed at a temperature of 450 °C is aluminum magnesium (Al3Mg2), Aluminum Magnesium Zinc (AlMg2Zn). |
---|---|
ISSN: | 0094-243X 1551-7616 |
DOI: | 10.1063/1.4945471 |