Loading…
High-power, surface-emitting quantum cascade laser operating in a symmetric grating mode
Grating-coupled surface-emitting (GCSE) lasers generally operate with a double-lobed far-field beam pattern along the cavity-length direction, which is a result of lasing being favored in the antisymmetric grating mode. We experimentally demonstrate a GCSE quantum-cascade laser design allowing high-...
Saved in:
Published in: | Applied physics letters 2016-03, Vol.108 (12) |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c355t-7320fbddbf9998ac5f4786289666d4f929aafd39ec183db4f74a8172c84ff7ef3 |
---|---|
cites | cdi_FETCH-LOGICAL-c355t-7320fbddbf9998ac5f4786289666d4f929aafd39ec183db4f74a8172c84ff7ef3 |
container_end_page | |
container_issue | 12 |
container_start_page | |
container_title | Applied physics letters |
container_volume | 108 |
creator | Boyle, C. Sigler, C. Kirch, J. D. Lindberg, D. F. Earles, T. Botez, D. Mawst, L. J. |
description | Grating-coupled surface-emitting (GCSE) lasers generally operate with a double-lobed far-field beam pattern along the cavity-length direction, which is a result of lasing being favored in the antisymmetric grating mode. We experimentally demonstrate a GCSE quantum-cascade laser design allowing high-power, nearly single-lobed surface emission parallel to the longitudinal cavity. A 2nd-order Au-semiconductor distributed-feedback (DFB)/distributed-Bragg-reflector (DBR) grating is used for feedback and out-coupling. The DFB and DBR grating regions are 2.55 mm- and 1.28 mm-long, respectively, for a total grating length of 5.1 mm. The lasers are designed to operate in a symmetric (longitudinal) grating mode by causing resonant coupling of the guided optical mode to the antisymmetric surface-plasmon modes of the 2nd-order metal/semiconductor grating. Then, the antisymmetric modes are strongly absorbed by the metal in the grating, causing the symmetric mode to be favored to lase, which, in turn, produces a single-lobed beam over a range of grating duty-cycle values of 36%–41%. Simulations indicate that the symmetric mode is always favored to lase, independent of the random phase of reflections from the device's cleaved ends. Peak pulsed output powers of ∼0.4 W were measured with nearly single-lobe beam-pattern (in the longitudinal direction), single-spatial-mode operation near 4.75 μm wavelength. Far-field measurements confirm a diffraction-limited beam pattern, in agreement with simulations, for a source-to-detector separation of 2 m. |
doi_str_mv | 10.1063/1.4944846 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2121836790</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2121836790</sourcerecordid><originalsourceid>FETCH-LOGICAL-c355t-7320fbddbf9998ac5f4786289666d4f929aafd39ec183db4f74a8172c84ff7ef3</originalsourceid><addsrcrecordid>eNqdkE1LAzEQhoMoWKsH_0HAk-LWfG12cxRRKxS8KHgLaT7alO5mm2SV_nu3ttC7p2FmHt555wXgGqMJRpw-4AkTjNWMn4ARRlVVUIzrUzBCCNGCixKfg4uUVkNbEkpH4GvqF8uiCz823sPUR6e0LWzjc_btAm561ea-gVolrYyFa5VshKGzUf3tfQsVTNumsTl6DReHcROMvQRnTq2TvTrUMfh8ef54mhaz99e3p8dZoWlZ5qKiBLm5MXMnhKiVLh2rak5qwTk3zAkilHKGCqtxTc2cuYqpGldE18y5yjo6Bjd73ZCyl0n7bPVSh7a1OktCSoFZKY5UF8OmtynLVehjOxiTBJNBmlcCDdTtntIxpBStk130jYpbiZHcxSuxPMQ7sHd7dndyeDu0_4O_QzyCsjOO_gL28Yih</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2121836790</pqid></control><display><type>article</type><title>High-power, surface-emitting quantum cascade laser operating in a symmetric grating mode</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><source>AIP_美国物理联合会现刊(与NSTL共建)</source><creator>Boyle, C. ; Sigler, C. ; Kirch, J. D. ; Lindberg, D. F. ; Earles, T. ; Botez, D. ; Mawst, L. J.</creator><creatorcontrib>Boyle, C. ; Sigler, C. ; Kirch, J. D. ; Lindberg, D. F. ; Earles, T. ; Botez, D. ; Mawst, L. J.</creatorcontrib><description>Grating-coupled surface-emitting (GCSE) lasers generally operate with a double-lobed far-field beam pattern along the cavity-length direction, which is a result of lasing being favored in the antisymmetric grating mode. We experimentally demonstrate a GCSE quantum-cascade laser design allowing high-power, nearly single-lobed surface emission parallel to the longitudinal cavity. A 2nd-order Au-semiconductor distributed-feedback (DFB)/distributed-Bragg-reflector (DBR) grating is used for feedback and out-coupling. The DFB and DBR grating regions are 2.55 mm- and 1.28 mm-long, respectively, for a total grating length of 5.1 mm. The lasers are designed to operate in a symmetric (longitudinal) grating mode by causing resonant coupling of the guided optical mode to the antisymmetric surface-plasmon modes of the 2nd-order metal/semiconductor grating. Then, the antisymmetric modes are strongly absorbed by the metal in the grating, causing the symmetric mode to be favored to lase, which, in turn, produces a single-lobed beam over a range of grating duty-cycle values of 36%–41%. Simulations indicate that the symmetric mode is always favored to lase, independent of the random phase of reflections from the device's cleaved ends. Peak pulsed output powers of ∼0.4 W were measured with nearly single-lobe beam-pattern (in the longitudinal direction), single-spatial-mode operation near 4.75 μm wavelength. Far-field measurements confirm a diffraction-limited beam pattern, in agreement with simulations, for a source-to-detector separation of 2 m.</description><identifier>ISSN: 0003-6951</identifier><identifier>EISSN: 1077-3118</identifier><identifier>DOI: 10.1063/1.4944846</identifier><identifier>CODEN: APPLAB</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Applied physics ; CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS ; Coupled modes ; Coupling ; DIFFRACTION ; Diffraction patterns ; Far fields ; FEEDBACK ; GRATINGS ; LANTHANUM SELENIDES ; Laser beams ; LASERS ; LENGTH ; METALS ; PLASMONS ; Quantum cascade lasers ; SEMICONDUCTOR MATERIALS ; SIMULATION ; SURFACES ; SYMMETRY</subject><ispartof>Applied physics letters, 2016-03, Vol.108 (12)</ispartof><rights>AIP Publishing LLC</rights><rights>2016 AIP Publishing LLC.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c355t-7320fbddbf9998ac5f4786289666d4f929aafd39ec183db4f74a8172c84ff7ef3</citedby><cites>FETCH-LOGICAL-c355t-7320fbddbf9998ac5f4786289666d4f929aafd39ec183db4f74a8172c84ff7ef3</cites><orcidid>0000-0002-3232-7222 ; 0000-0003-2059-1920</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/apl/article-lookup/doi/10.1063/1.4944846$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>230,314,780,782,784,795,885,27924,27925,76255</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/22591459$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Boyle, C.</creatorcontrib><creatorcontrib>Sigler, C.</creatorcontrib><creatorcontrib>Kirch, J. D.</creatorcontrib><creatorcontrib>Lindberg, D. F.</creatorcontrib><creatorcontrib>Earles, T.</creatorcontrib><creatorcontrib>Botez, D.</creatorcontrib><creatorcontrib>Mawst, L. J.</creatorcontrib><title>High-power, surface-emitting quantum cascade laser operating in a symmetric grating mode</title><title>Applied physics letters</title><description>Grating-coupled surface-emitting (GCSE) lasers generally operate with a double-lobed far-field beam pattern along the cavity-length direction, which is a result of lasing being favored in the antisymmetric grating mode. We experimentally demonstrate a GCSE quantum-cascade laser design allowing high-power, nearly single-lobed surface emission parallel to the longitudinal cavity. A 2nd-order Au-semiconductor distributed-feedback (DFB)/distributed-Bragg-reflector (DBR) grating is used for feedback and out-coupling. The DFB and DBR grating regions are 2.55 mm- and 1.28 mm-long, respectively, for a total grating length of 5.1 mm. The lasers are designed to operate in a symmetric (longitudinal) grating mode by causing resonant coupling of the guided optical mode to the antisymmetric surface-plasmon modes of the 2nd-order metal/semiconductor grating. Then, the antisymmetric modes are strongly absorbed by the metal in the grating, causing the symmetric mode to be favored to lase, which, in turn, produces a single-lobed beam over a range of grating duty-cycle values of 36%–41%. Simulations indicate that the symmetric mode is always favored to lase, independent of the random phase of reflections from the device's cleaved ends. Peak pulsed output powers of ∼0.4 W were measured with nearly single-lobe beam-pattern (in the longitudinal direction), single-spatial-mode operation near 4.75 μm wavelength. Far-field measurements confirm a diffraction-limited beam pattern, in agreement with simulations, for a source-to-detector separation of 2 m.</description><subject>Applied physics</subject><subject>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</subject><subject>Coupled modes</subject><subject>Coupling</subject><subject>DIFFRACTION</subject><subject>Diffraction patterns</subject><subject>Far fields</subject><subject>FEEDBACK</subject><subject>GRATINGS</subject><subject>LANTHANUM SELENIDES</subject><subject>Laser beams</subject><subject>LASERS</subject><subject>LENGTH</subject><subject>METALS</subject><subject>PLASMONS</subject><subject>Quantum cascade lasers</subject><subject>SEMICONDUCTOR MATERIALS</subject><subject>SIMULATION</subject><subject>SURFACES</subject><subject>SYMMETRY</subject><issn>0003-6951</issn><issn>1077-3118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqdkE1LAzEQhoMoWKsH_0HAk-LWfG12cxRRKxS8KHgLaT7alO5mm2SV_nu3ttC7p2FmHt555wXgGqMJRpw-4AkTjNWMn4ARRlVVUIzrUzBCCNGCixKfg4uUVkNbEkpH4GvqF8uiCz823sPUR6e0LWzjc_btAm561ea-gVolrYyFa5VshKGzUf3tfQsVTNumsTl6DReHcROMvQRnTq2TvTrUMfh8ef54mhaz99e3p8dZoWlZ5qKiBLm5MXMnhKiVLh2rak5qwTk3zAkilHKGCqtxTc2cuYqpGldE18y5yjo6Bjd73ZCyl0n7bPVSh7a1OktCSoFZKY5UF8OmtynLVehjOxiTBJNBmlcCDdTtntIxpBStk130jYpbiZHcxSuxPMQ7sHd7dndyeDu0_4O_QzyCsjOO_gL28Yih</recordid><startdate>20160321</startdate><enddate>20160321</enddate><creator>Boyle, C.</creator><creator>Sigler, C.</creator><creator>Kirch, J. D.</creator><creator>Lindberg, D. F.</creator><creator>Earles, T.</creator><creator>Botez, D.</creator><creator>Mawst, L. J.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-3232-7222</orcidid><orcidid>https://orcid.org/0000-0003-2059-1920</orcidid></search><sort><creationdate>20160321</creationdate><title>High-power, surface-emitting quantum cascade laser operating in a symmetric grating mode</title><author>Boyle, C. ; Sigler, C. ; Kirch, J. D. ; Lindberg, D. F. ; Earles, T. ; Botez, D. ; Mawst, L. J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c355t-7320fbddbf9998ac5f4786289666d4f929aafd39ec183db4f74a8172c84ff7ef3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Applied physics</topic><topic>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</topic><topic>Coupled modes</topic><topic>Coupling</topic><topic>DIFFRACTION</topic><topic>Diffraction patterns</topic><topic>Far fields</topic><topic>FEEDBACK</topic><topic>GRATINGS</topic><topic>LANTHANUM SELENIDES</topic><topic>Laser beams</topic><topic>LASERS</topic><topic>LENGTH</topic><topic>METALS</topic><topic>PLASMONS</topic><topic>Quantum cascade lasers</topic><topic>SEMICONDUCTOR MATERIALS</topic><topic>SIMULATION</topic><topic>SURFACES</topic><topic>SYMMETRY</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Boyle, C.</creatorcontrib><creatorcontrib>Sigler, C.</creatorcontrib><creatorcontrib>Kirch, J. D.</creatorcontrib><creatorcontrib>Lindberg, D. F.</creatorcontrib><creatorcontrib>Earles, T.</creatorcontrib><creatorcontrib>Botez, D.</creatorcontrib><creatorcontrib>Mawst, L. J.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>Applied physics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Boyle, C.</au><au>Sigler, C.</au><au>Kirch, J. D.</au><au>Lindberg, D. F.</au><au>Earles, T.</au><au>Botez, D.</au><au>Mawst, L. J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High-power, surface-emitting quantum cascade laser operating in a symmetric grating mode</atitle><jtitle>Applied physics letters</jtitle><date>2016-03-21</date><risdate>2016</risdate><volume>108</volume><issue>12</issue><issn>0003-6951</issn><eissn>1077-3118</eissn><coden>APPLAB</coden><abstract>Grating-coupled surface-emitting (GCSE) lasers generally operate with a double-lobed far-field beam pattern along the cavity-length direction, which is a result of lasing being favored in the antisymmetric grating mode. We experimentally demonstrate a GCSE quantum-cascade laser design allowing high-power, nearly single-lobed surface emission parallel to the longitudinal cavity. A 2nd-order Au-semiconductor distributed-feedback (DFB)/distributed-Bragg-reflector (DBR) grating is used for feedback and out-coupling. The DFB and DBR grating regions are 2.55 mm- and 1.28 mm-long, respectively, for a total grating length of 5.1 mm. The lasers are designed to operate in a symmetric (longitudinal) grating mode by causing resonant coupling of the guided optical mode to the antisymmetric surface-plasmon modes of the 2nd-order metal/semiconductor grating. Then, the antisymmetric modes are strongly absorbed by the metal in the grating, causing the symmetric mode to be favored to lase, which, in turn, produces a single-lobed beam over a range of grating duty-cycle values of 36%–41%. Simulations indicate that the symmetric mode is always favored to lase, independent of the random phase of reflections from the device's cleaved ends. Peak pulsed output powers of ∼0.4 W were measured with nearly single-lobe beam-pattern (in the longitudinal direction), single-spatial-mode operation near 4.75 μm wavelength. Far-field measurements confirm a diffraction-limited beam pattern, in agreement with simulations, for a source-to-detector separation of 2 m.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.4944846</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-3232-7222</orcidid><orcidid>https://orcid.org/0000-0003-2059-1920</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-6951 |
ispartof | Applied physics letters, 2016-03, Vol.108 (12) |
issn | 0003-6951 1077-3118 |
language | eng |
recordid | cdi_proquest_journals_2121836790 |
source | American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list); AIP_美国物理联合会现刊(与NSTL共建) |
subjects | Applied physics CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS Coupled modes Coupling DIFFRACTION Diffraction patterns Far fields FEEDBACK GRATINGS LANTHANUM SELENIDES Laser beams LASERS LENGTH METALS PLASMONS Quantum cascade lasers SEMICONDUCTOR MATERIALS SIMULATION SURFACES SYMMETRY |
title | High-power, surface-emitting quantum cascade laser operating in a symmetric grating mode |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T01%3A20%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High-power,%20surface-emitting%20quantum%20cascade%20laser%20operating%20in%20a%20symmetric%20grating%20mode&rft.jtitle=Applied%20physics%20letters&rft.au=Boyle,%20C.&rft.date=2016-03-21&rft.volume=108&rft.issue=12&rft.issn=0003-6951&rft.eissn=1077-3118&rft.coden=APPLAB&rft_id=info:doi/10.1063/1.4944846&rft_dat=%3Cproquest_cross%3E2121836790%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c355t-7320fbddbf9998ac5f4786289666d4f929aafd39ec183db4f74a8172c84ff7ef3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2121836790&rft_id=info:pmid/&rfr_iscdi=true |