Loading…

High-power, surface-emitting quantum cascade laser operating in a symmetric grating mode

Grating-coupled surface-emitting (GCSE) lasers generally operate with a double-lobed far-field beam pattern along the cavity-length direction, which is a result of lasing being favored in the antisymmetric grating mode. We experimentally demonstrate a GCSE quantum-cascade laser design allowing high-...

Full description

Saved in:
Bibliographic Details
Published in:Applied physics letters 2016-03, Vol.108 (12)
Main Authors: Boyle, C., Sigler, C., Kirch, J. D., Lindberg, D. F., Earles, T., Botez, D., Mawst, L. J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c355t-7320fbddbf9998ac5f4786289666d4f929aafd39ec183db4f74a8172c84ff7ef3
cites cdi_FETCH-LOGICAL-c355t-7320fbddbf9998ac5f4786289666d4f929aafd39ec183db4f74a8172c84ff7ef3
container_end_page
container_issue 12
container_start_page
container_title Applied physics letters
container_volume 108
creator Boyle, C.
Sigler, C.
Kirch, J. D.
Lindberg, D. F.
Earles, T.
Botez, D.
Mawst, L. J.
description Grating-coupled surface-emitting (GCSE) lasers generally operate with a double-lobed far-field beam pattern along the cavity-length direction, which is a result of lasing being favored in the antisymmetric grating mode. We experimentally demonstrate a GCSE quantum-cascade laser design allowing high-power, nearly single-lobed surface emission parallel to the longitudinal cavity. A 2nd-order Au-semiconductor distributed-feedback (DFB)/distributed-Bragg-reflector (DBR) grating is used for feedback and out-coupling. The DFB and DBR grating regions are 2.55 mm- and 1.28 mm-long, respectively, for a total grating length of 5.1 mm. The lasers are designed to operate in a symmetric (longitudinal) grating mode by causing resonant coupling of the guided optical mode to the antisymmetric surface-plasmon modes of the 2nd-order metal/semiconductor grating. Then, the antisymmetric modes are strongly absorbed by the metal in the grating, causing the symmetric mode to be favored to lase, which, in turn, produces a single-lobed beam over a range of grating duty-cycle values of 36%–41%. Simulations indicate that the symmetric mode is always favored to lase, independent of the random phase of reflections from the device's cleaved ends. Peak pulsed output powers of ∼0.4 W were measured with nearly single-lobe beam-pattern (in the longitudinal direction), single-spatial-mode operation near 4.75 μm wavelength. Far-field measurements confirm a diffraction-limited beam pattern, in agreement with simulations, for a source-to-detector separation of 2 m.
doi_str_mv 10.1063/1.4944846
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2121836790</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2121836790</sourcerecordid><originalsourceid>FETCH-LOGICAL-c355t-7320fbddbf9998ac5f4786289666d4f929aafd39ec183db4f74a8172c84ff7ef3</originalsourceid><addsrcrecordid>eNqdkE1LAzEQhoMoWKsH_0HAk-LWfG12cxRRKxS8KHgLaT7alO5mm2SV_nu3ttC7p2FmHt555wXgGqMJRpw-4AkTjNWMn4ARRlVVUIzrUzBCCNGCixKfg4uUVkNbEkpH4GvqF8uiCz823sPUR6e0LWzjc_btAm561ea-gVolrYyFa5VshKGzUf3tfQsVTNumsTl6DReHcROMvQRnTq2TvTrUMfh8ef54mhaz99e3p8dZoWlZ5qKiBLm5MXMnhKiVLh2rak5qwTk3zAkilHKGCqtxTc2cuYqpGldE18y5yjo6Bjd73ZCyl0n7bPVSh7a1OktCSoFZKY5UF8OmtynLVehjOxiTBJNBmlcCDdTtntIxpBStk130jYpbiZHcxSuxPMQ7sHd7dndyeDu0_4O_QzyCsjOO_gL28Yih</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2121836790</pqid></control><display><type>article</type><title>High-power, surface-emitting quantum cascade laser operating in a symmetric grating mode</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><source>AIP_美国物理联合会现刊(与NSTL共建)</source><creator>Boyle, C. ; Sigler, C. ; Kirch, J. D. ; Lindberg, D. F. ; Earles, T. ; Botez, D. ; Mawst, L. J.</creator><creatorcontrib>Boyle, C. ; Sigler, C. ; Kirch, J. D. ; Lindberg, D. F. ; Earles, T. ; Botez, D. ; Mawst, L. J.</creatorcontrib><description>Grating-coupled surface-emitting (GCSE) lasers generally operate with a double-lobed far-field beam pattern along the cavity-length direction, which is a result of lasing being favored in the antisymmetric grating mode. We experimentally demonstrate a GCSE quantum-cascade laser design allowing high-power, nearly single-lobed surface emission parallel to the longitudinal cavity. A 2nd-order Au-semiconductor distributed-feedback (DFB)/distributed-Bragg-reflector (DBR) grating is used for feedback and out-coupling. The DFB and DBR grating regions are 2.55 mm- and 1.28 mm-long, respectively, for a total grating length of 5.1 mm. The lasers are designed to operate in a symmetric (longitudinal) grating mode by causing resonant coupling of the guided optical mode to the antisymmetric surface-plasmon modes of the 2nd-order metal/semiconductor grating. Then, the antisymmetric modes are strongly absorbed by the metal in the grating, causing the symmetric mode to be favored to lase, which, in turn, produces a single-lobed beam over a range of grating duty-cycle values of 36%–41%. Simulations indicate that the symmetric mode is always favored to lase, independent of the random phase of reflections from the device's cleaved ends. Peak pulsed output powers of ∼0.4 W were measured with nearly single-lobe beam-pattern (in the longitudinal direction), single-spatial-mode operation near 4.75 μm wavelength. Far-field measurements confirm a diffraction-limited beam pattern, in agreement with simulations, for a source-to-detector separation of 2 m.</description><identifier>ISSN: 0003-6951</identifier><identifier>EISSN: 1077-3118</identifier><identifier>DOI: 10.1063/1.4944846</identifier><identifier>CODEN: APPLAB</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Applied physics ; CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS ; Coupled modes ; Coupling ; DIFFRACTION ; Diffraction patterns ; Far fields ; FEEDBACK ; GRATINGS ; LANTHANUM SELENIDES ; Laser beams ; LASERS ; LENGTH ; METALS ; PLASMONS ; Quantum cascade lasers ; SEMICONDUCTOR MATERIALS ; SIMULATION ; SURFACES ; SYMMETRY</subject><ispartof>Applied physics letters, 2016-03, Vol.108 (12)</ispartof><rights>AIP Publishing LLC</rights><rights>2016 AIP Publishing LLC.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c355t-7320fbddbf9998ac5f4786289666d4f929aafd39ec183db4f74a8172c84ff7ef3</citedby><cites>FETCH-LOGICAL-c355t-7320fbddbf9998ac5f4786289666d4f929aafd39ec183db4f74a8172c84ff7ef3</cites><orcidid>0000-0002-3232-7222 ; 0000-0003-2059-1920</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/apl/article-lookup/doi/10.1063/1.4944846$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>230,314,780,782,784,795,885,27924,27925,76255</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/22591459$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Boyle, C.</creatorcontrib><creatorcontrib>Sigler, C.</creatorcontrib><creatorcontrib>Kirch, J. D.</creatorcontrib><creatorcontrib>Lindberg, D. F.</creatorcontrib><creatorcontrib>Earles, T.</creatorcontrib><creatorcontrib>Botez, D.</creatorcontrib><creatorcontrib>Mawst, L. J.</creatorcontrib><title>High-power, surface-emitting quantum cascade laser operating in a symmetric grating mode</title><title>Applied physics letters</title><description>Grating-coupled surface-emitting (GCSE) lasers generally operate with a double-lobed far-field beam pattern along the cavity-length direction, which is a result of lasing being favored in the antisymmetric grating mode. We experimentally demonstrate a GCSE quantum-cascade laser design allowing high-power, nearly single-lobed surface emission parallel to the longitudinal cavity. A 2nd-order Au-semiconductor distributed-feedback (DFB)/distributed-Bragg-reflector (DBR) grating is used for feedback and out-coupling. The DFB and DBR grating regions are 2.55 mm- and 1.28 mm-long, respectively, for a total grating length of 5.1 mm. The lasers are designed to operate in a symmetric (longitudinal) grating mode by causing resonant coupling of the guided optical mode to the antisymmetric surface-plasmon modes of the 2nd-order metal/semiconductor grating. Then, the antisymmetric modes are strongly absorbed by the metal in the grating, causing the symmetric mode to be favored to lase, which, in turn, produces a single-lobed beam over a range of grating duty-cycle values of 36%–41%. Simulations indicate that the symmetric mode is always favored to lase, independent of the random phase of reflections from the device's cleaved ends. Peak pulsed output powers of ∼0.4 W were measured with nearly single-lobe beam-pattern (in the longitudinal direction), single-spatial-mode operation near 4.75 μm wavelength. Far-field measurements confirm a diffraction-limited beam pattern, in agreement with simulations, for a source-to-detector separation of 2 m.</description><subject>Applied physics</subject><subject>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</subject><subject>Coupled modes</subject><subject>Coupling</subject><subject>DIFFRACTION</subject><subject>Diffraction patterns</subject><subject>Far fields</subject><subject>FEEDBACK</subject><subject>GRATINGS</subject><subject>LANTHANUM SELENIDES</subject><subject>Laser beams</subject><subject>LASERS</subject><subject>LENGTH</subject><subject>METALS</subject><subject>PLASMONS</subject><subject>Quantum cascade lasers</subject><subject>SEMICONDUCTOR MATERIALS</subject><subject>SIMULATION</subject><subject>SURFACES</subject><subject>SYMMETRY</subject><issn>0003-6951</issn><issn>1077-3118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqdkE1LAzEQhoMoWKsH_0HAk-LWfG12cxRRKxS8KHgLaT7alO5mm2SV_nu3ttC7p2FmHt555wXgGqMJRpw-4AkTjNWMn4ARRlVVUIzrUzBCCNGCixKfg4uUVkNbEkpH4GvqF8uiCz823sPUR6e0LWzjc_btAm561ea-gVolrYyFa5VshKGzUf3tfQsVTNumsTl6DReHcROMvQRnTq2TvTrUMfh8ef54mhaz99e3p8dZoWlZ5qKiBLm5MXMnhKiVLh2rak5qwTk3zAkilHKGCqtxTc2cuYqpGldE18y5yjo6Bjd73ZCyl0n7bPVSh7a1OktCSoFZKY5UF8OmtynLVehjOxiTBJNBmlcCDdTtntIxpBStk130jYpbiZHcxSuxPMQ7sHd7dndyeDu0_4O_QzyCsjOO_gL28Yih</recordid><startdate>20160321</startdate><enddate>20160321</enddate><creator>Boyle, C.</creator><creator>Sigler, C.</creator><creator>Kirch, J. D.</creator><creator>Lindberg, D. F.</creator><creator>Earles, T.</creator><creator>Botez, D.</creator><creator>Mawst, L. J.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-3232-7222</orcidid><orcidid>https://orcid.org/0000-0003-2059-1920</orcidid></search><sort><creationdate>20160321</creationdate><title>High-power, surface-emitting quantum cascade laser operating in a symmetric grating mode</title><author>Boyle, C. ; Sigler, C. ; Kirch, J. D. ; Lindberg, D. F. ; Earles, T. ; Botez, D. ; Mawst, L. J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c355t-7320fbddbf9998ac5f4786289666d4f929aafd39ec183db4f74a8172c84ff7ef3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Applied physics</topic><topic>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</topic><topic>Coupled modes</topic><topic>Coupling</topic><topic>DIFFRACTION</topic><topic>Diffraction patterns</topic><topic>Far fields</topic><topic>FEEDBACK</topic><topic>GRATINGS</topic><topic>LANTHANUM SELENIDES</topic><topic>Laser beams</topic><topic>LASERS</topic><topic>LENGTH</topic><topic>METALS</topic><topic>PLASMONS</topic><topic>Quantum cascade lasers</topic><topic>SEMICONDUCTOR MATERIALS</topic><topic>SIMULATION</topic><topic>SURFACES</topic><topic>SYMMETRY</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Boyle, C.</creatorcontrib><creatorcontrib>Sigler, C.</creatorcontrib><creatorcontrib>Kirch, J. D.</creatorcontrib><creatorcontrib>Lindberg, D. F.</creatorcontrib><creatorcontrib>Earles, T.</creatorcontrib><creatorcontrib>Botez, D.</creatorcontrib><creatorcontrib>Mawst, L. J.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>Applied physics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Boyle, C.</au><au>Sigler, C.</au><au>Kirch, J. D.</au><au>Lindberg, D. F.</au><au>Earles, T.</au><au>Botez, D.</au><au>Mawst, L. J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High-power, surface-emitting quantum cascade laser operating in a symmetric grating mode</atitle><jtitle>Applied physics letters</jtitle><date>2016-03-21</date><risdate>2016</risdate><volume>108</volume><issue>12</issue><issn>0003-6951</issn><eissn>1077-3118</eissn><coden>APPLAB</coden><abstract>Grating-coupled surface-emitting (GCSE) lasers generally operate with a double-lobed far-field beam pattern along the cavity-length direction, which is a result of lasing being favored in the antisymmetric grating mode. We experimentally demonstrate a GCSE quantum-cascade laser design allowing high-power, nearly single-lobed surface emission parallel to the longitudinal cavity. A 2nd-order Au-semiconductor distributed-feedback (DFB)/distributed-Bragg-reflector (DBR) grating is used for feedback and out-coupling. The DFB and DBR grating regions are 2.55 mm- and 1.28 mm-long, respectively, for a total grating length of 5.1 mm. The lasers are designed to operate in a symmetric (longitudinal) grating mode by causing resonant coupling of the guided optical mode to the antisymmetric surface-plasmon modes of the 2nd-order metal/semiconductor grating. Then, the antisymmetric modes are strongly absorbed by the metal in the grating, causing the symmetric mode to be favored to lase, which, in turn, produces a single-lobed beam over a range of grating duty-cycle values of 36%–41%. Simulations indicate that the symmetric mode is always favored to lase, independent of the random phase of reflections from the device's cleaved ends. Peak pulsed output powers of ∼0.4 W were measured with nearly single-lobe beam-pattern (in the longitudinal direction), single-spatial-mode operation near 4.75 μm wavelength. Far-field measurements confirm a diffraction-limited beam pattern, in agreement with simulations, for a source-to-detector separation of 2 m.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.4944846</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-3232-7222</orcidid><orcidid>https://orcid.org/0000-0003-2059-1920</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0003-6951
ispartof Applied physics letters, 2016-03, Vol.108 (12)
issn 0003-6951
1077-3118
language eng
recordid cdi_proquest_journals_2121836790
source American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list); AIP_美国物理联合会现刊(与NSTL共建)
subjects Applied physics
CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS
Coupled modes
Coupling
DIFFRACTION
Diffraction patterns
Far fields
FEEDBACK
GRATINGS
LANTHANUM SELENIDES
Laser beams
LASERS
LENGTH
METALS
PLASMONS
Quantum cascade lasers
SEMICONDUCTOR MATERIALS
SIMULATION
SURFACES
SYMMETRY
title High-power, surface-emitting quantum cascade laser operating in a symmetric grating mode
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T01%3A20%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High-power,%20surface-emitting%20quantum%20cascade%20laser%20operating%20in%20a%20symmetric%20grating%20mode&rft.jtitle=Applied%20physics%20letters&rft.au=Boyle,%20C.&rft.date=2016-03-21&rft.volume=108&rft.issue=12&rft.issn=0003-6951&rft.eissn=1077-3118&rft.coden=APPLAB&rft_id=info:doi/10.1063/1.4944846&rft_dat=%3Cproquest_cross%3E2121836790%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c355t-7320fbddbf9998ac5f4786289666d4f929aafd39ec183db4f74a8172c84ff7ef3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2121836790&rft_id=info:pmid/&rfr_iscdi=true