Loading…

Molecular energies from an incremental fragmentation method

The systematic molecular fragmentation method by Collins and Deev [J. Chem. Phys. 125, 104104 (2006)] has been used to calculate total energies and relative conformational energies for a number of small and extended molecular systems. In contrast to the original approach by Collins, we have tested t...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of chemical physics 2016-02, Vol.144 (8), p.084109-084109
Main Authors: Meitei, Oinam Romesh, Heßelmann, Andreas
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The systematic molecular fragmentation method by Collins and Deev [J. Chem. Phys. 125, 104104 (2006)] has been used to calculate total energies and relative conformational energies for a number of small and extended molecular systems. In contrast to the original approach by Collins, we have tested the accuracy of the fragmentation method by utilising an incremental scheme in which the energies at the lowest level of the fragmentation are calculated on an accurate quantum chemistry level while lower-cost methods are used to correct the low-level energies through a high-level fragmentation. In this work, the fragment energies at the lowest level of fragmentation were calculated using the random-phase approximation (RPA) and two recently developed extensions to the RPA while the incremental corrections at higher levels of the fragmentation were calculated using standard density functional theory (DFT) methods. The complete incremental fragmentation method has been shown to reproduce the supermolecule results with a very good accuracy, almost independent on the molecular type, size, or type of decomposition. The fragmentation method has also been used in conjunction with the DFT-SAPT (symmetry-adapted perturbation theory) method which enables a breakdown of the total nonbonding energy contributions into individual interaction energy terms. Finally, the potential problems of the method connected with the use of capping hydrogen atoms are analysed and two possible solutions are supplied.
ISSN:0021-9606
1089-7690
DOI:10.1063/1.4942189