Loading…

Efficiency enhancement in InAs/GaAsSb quantum dot solar cells with GaP strain compensation layer

The structural characteristics and device performance of strain-compensated InAs/GaAsSb quantum dot solar cells (QDSCs) with different GaP coverages have been studied. The in-plane (out-of-plane) compressive strain of the QD stacks is reduced from −1.24 (+1.06) to −0.39 (+0.33)% by increasing the Ga...

Full description

Saved in:
Bibliographic Details
Published in:Applied physics letters 2016-03, Vol.108 (10)
Main Authors: Kim, Yeongho, Ban, Keun-Yong, Zhang, Chaomin, Kim, Jun Oh, Lee, Sang Jun, Honsberg, Christiana B.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The structural characteristics and device performance of strain-compensated InAs/GaAsSb quantum dot solar cells (QDSCs) with different GaP coverages have been studied. The in-plane (out-of-plane) compressive strain of the QD stacks is reduced from −1.24 (+1.06) to −0.39 (+0.33)% by increasing the GaP coverage from 0 to 4 ML. This strain compensation decreases strain-induced dislocation density and hence enhances the overall crystal quality of the QDSCs. The external quantum efficiency spectra reveal that the increase in the GaP coverage increases the photocurrent from wavelengths shorter than GaAs bandedge of 880 nm, while it decreases the photocurrent from near infrared wavelengths beyond the bandedge. The conversion efficiency of the QDSCs is significantly improved from 7.22 to 9.67% as the GaP coverage is increased from 0 to 4 ML.
ISSN:0003-6951
1077-3118
DOI:10.1063/1.4943182