Loading…
Efficiency enhancement in InAs/GaAsSb quantum dot solar cells with GaP strain compensation layer
The structural characteristics and device performance of strain-compensated InAs/GaAsSb quantum dot solar cells (QDSCs) with different GaP coverages have been studied. The in-plane (out-of-plane) compressive strain of the QD stacks is reduced from −1.24 (+1.06) to −0.39 (+0.33)% by increasing the Ga...
Saved in:
Published in: | Applied physics letters 2016-03, Vol.108 (10) |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The structural characteristics and device performance of strain-compensated InAs/GaAsSb quantum dot solar cells (QDSCs) with different GaP coverages have been studied. The in-plane (out-of-plane) compressive strain of the QD stacks is reduced from −1.24 (+1.06) to −0.39 (+0.33)% by increasing the GaP coverage from 0 to 4 ML. This strain compensation decreases strain-induced dislocation density and hence enhances the overall crystal quality of the QDSCs. The external quantum efficiency spectra reveal that the increase in the GaP coverage increases the photocurrent from wavelengths shorter than GaAs bandedge of 880 nm, while it decreases the photocurrent from near infrared wavelengths beyond the bandedge. The conversion efficiency of the QDSCs is significantly improved from 7.22 to 9.67% as the GaP coverage is increased from 0 to 4 ML. |
---|---|
ISSN: | 0003-6951 1077-3118 |
DOI: | 10.1063/1.4943182 |