Loading…
The importance of the cathode plume and its interactions with the ion beam in numerical simulations of Hall thrusters
Numerical simulations with a 2-D axisymmetric multi-fluid plasma code illustrate the significance of the near-plume interactions in investigations of the anomalous electron transport in Hall thrusters. In our simulations, the transport of electrons is modeled using an anomalous collision frequency,...
Saved in:
Published in: | Physics of plasmas 2016-04, Vol.23 (4) |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Numerical simulations with a 2-D axisymmetric multi-fluid plasma code illustrate the significance of the near-plume interactions in investigations of the anomalous electron transport in Hall thrusters. In our simulations, the transport of electrons is modeled using an anomalous collision frequency, νanom, yielding νanom ≈ ωce (i.e., the electron cyclotron frequency) in the near-plume region. We first show that restricting the anomalous collision frequency in this region to only within the ion beam, where the current density of ions is large, does not alter the plasma discharge in the Hall thruster as long as the interaction between the beam and the cathode plume is captured properly. These simulations suggest that electron transport occurs largely inside the beam. A second finding is on the significance of accounting for the ion acoustic turbulence (IAT), now known to occur in the vicinity of the cathode exit. We have included in our simulations a model of the IAT-driven anomalous collision frequency based on Sagdeev's model for saturation of the ion-acoustic instability. This implementation has allowed us to achieve excellent agreement with experimental measurements in the near plume of the H6 Hall thruster. Low frequency plasma oscillations similar in both magnitude and frequency to those found in the H6 thruster are recovered in our simulations when the model for the anomalous collision frequency in the cathode plume is included. |
---|---|
ISSN: | 1070-664X 1089-7674 |
DOI: | 10.1063/1.4947554 |