Loading…

Energy management strategy for hybrid electric vehicles using genetic algorithm

Energy management strategies significantly influence the fuel efficiency of hybrid electric vehicles. They play a crucial role in splitting the power between two sources, namely, engine and the battery. Power split between these two intelligently will enhance the fuel economy and regulates the power...

Full description

Saved in:
Bibliographic Details
Published in:Journal of renewable and sustainable energy 2016-01, Vol.8 (1)
Main Authors: Panday, Aishwarya, Bansal, Hari Om
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Energy management strategies significantly influence the fuel efficiency of hybrid electric vehicles. They play a crucial role in splitting the power between two sources, namely, engine and the battery. Power split between these two intelligently will enhance the fuel economy and regulates the power flow. Power split between engine and motor depends on state of charge (SOC) of battery, power required at the wheels, and engine's operating range. Various parameters of power train are considered to control the toggling between engine and battery. To achieve parameter optimization, genetic algorithm is practised to realize the optimal performance. A modified SOC estimation algorithm is employed with different battery models to analyze the vehicle performance. The battery models with internal resistance only and combinations of 1RC and 2RC are used. Parameter optimization over different battery models with modified SOC estimation algorithm is performed in different situations and a comparative study is elaborated.
ISSN:1941-7012
1941-7012
DOI:10.1063/1.4938552