Loading…

Mechanical and electrical properties of low temperature phase MnBi

Low temperature phase (LTP) manganese bismuth (MnBi) is a promising rare-earth-free permanent magnet material due to its high intrinsic coercivity and large positive temperature coefficient. While scientists are making progress on fabricating bulk MnBi magnets, engineers have begun considering MnBi...

Full description

Saved in:
Bibliographic Details
Published in:Journal of applied physics 2016-01, Vol.119 (3)
Main Authors: Jiang, Xiujuan, Roosendaal, Timothy, Lu, Xiaochuan, Palasyuk, Olena, Dennis, Kevin W., Dahl, Michael, Choi, Jung-Pyung, Polikarpov, Evgueni, Marinescu, Melania, Cui, Jun
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c389t-9e6d0fdd2b15ffe2e9b2d450c12d8745db78e08c3da984bfa7a56bf0c6e33be63
cites cdi_FETCH-LOGICAL-c389t-9e6d0fdd2b15ffe2e9b2d450c12d8745db78e08c3da984bfa7a56bf0c6e33be63
container_end_page
container_issue 3
container_start_page
container_title Journal of applied physics
container_volume 119
creator Jiang, Xiujuan
Roosendaal, Timothy
Lu, Xiaochuan
Palasyuk, Olena
Dennis, Kevin W.
Dahl, Michael
Choi, Jung-Pyung
Polikarpov, Evgueni
Marinescu, Melania
Cui, Jun
description Low temperature phase (LTP) manganese bismuth (MnBi) is a promising rare-earth-free permanent magnet material due to its high intrinsic coercivity and large positive temperature coefficient. While scientists are making progress on fabricating bulk MnBi magnets, engineers have begun considering MnBi magnets for motor applications. Physical properties other than magnetic ones could significantly affect motor design. Here, we report results of our investigation on the mechanical and electrical properties of bulk LTP MnBi and their temperature dependence. A MnBi ingot was prepared using an arc melting technique and subsequently underwent grinding, sieving, heat treatment, and cryomilling. The resultant powders with a particle size of ∼5 μm were magnetically aligned, cold pressed, and sintered at a predefined temperature. Micro-hardness testing was performed on a part of original ingot and we found that the hardness of MnBi was 109 ± 15 HV. The sintered magnets were subjected to compressive testing at different temperatures and it was observed that a sintered MnBi magnet fractured when the compressive stress exceeded 193 MPa at room temperature. Impedance spectra were obtained using electrochemical impedance spectroscopy at various temperatures and we found that the electrical resistance of MnBi at room temperature was about 6.85 μΩ m.
doi_str_mv 10.1063/1.4939811
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2121910489</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2121910489</sourcerecordid><originalsourceid>FETCH-LOGICAL-c389t-9e6d0fdd2b15ffe2e9b2d450c12d8745db78e08c3da984bfa7a56bf0c6e33be63</originalsourceid><addsrcrecordid>eNqdkE1LAzEQhoMoWKsH_8GiJ4Wtmc1-JEdb_IIWL3oO2WRCt7SbNUkV_72pLXj3NMzwMPPMS8gl0AnQmt3BpBRMcIAjMgLKRd5UFT0mI0oLyLloxCk5C2FFKQBnYkSmC9RL1XdarTPVmwzXqKP_bQfvBvSxw5A5m63dVxZxkyYqbj1mw1IFzBb9tDsnJ1atA14c6pi8Pz68zZ7z-evTy-x-nmvGRcwF1oZaY4oWKmuxQNEWpqyohsLwpqxM23CkXDOjBC9bqxpV1a2lukbGWqzZmFzt97oQOxl0F5O6dn2fjCUUJUsfJeh6DyX7jy2GKFdu6_vkJQsoQAAtuUjUzZ7S3oXg0crBdxvlvyVQuctRgjzkmNjbPbu7qGLn-v_Bn87_gXIwlv0Ak7aAoQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2121910489</pqid></control><display><type>article</type><title>Mechanical and electrical properties of low temperature phase MnBi</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><creator>Jiang, Xiujuan ; Roosendaal, Timothy ; Lu, Xiaochuan ; Palasyuk, Olena ; Dennis, Kevin W. ; Dahl, Michael ; Choi, Jung-Pyung ; Polikarpov, Evgueni ; Marinescu, Melania ; Cui, Jun</creator><creatorcontrib>Jiang, Xiujuan ; Roosendaal, Timothy ; Lu, Xiaochuan ; Palasyuk, Olena ; Dennis, Kevin W. ; Dahl, Michael ; Choi, Jung-Pyung ; Polikarpov, Evgueni ; Marinescu, Melania ; Cui, Jun ; Pacific Northwest National Lab. (PNNL), Richland, WA (United States)</creatorcontrib><description>Low temperature phase (LTP) manganese bismuth (MnBi) is a promising rare-earth-free permanent magnet material due to its high intrinsic coercivity and large positive temperature coefficient. While scientists are making progress on fabricating bulk MnBi magnets, engineers have begun considering MnBi magnets for motor applications. Physical properties other than magnetic ones could significantly affect motor design. Here, we report results of our investigation on the mechanical and electrical properties of bulk LTP MnBi and their temperature dependence. A MnBi ingot was prepared using an arc melting technique and subsequently underwent grinding, sieving, heat treatment, and cryomilling. The resultant powders with a particle size of ∼5 μm were magnetically aligned, cold pressed, and sintered at a predefined temperature. Micro-hardness testing was performed on a part of original ingot and we found that the hardness of MnBi was 109 ± 15 HV. The sintered magnets were subjected to compressive testing at different temperatures and it was observed that a sintered MnBi magnet fractured when the compressive stress exceeded 193 MPa at room temperature. Impedance spectra were obtained using electrochemical impedance spectroscopy at various temperatures and we found that the electrical resistance of MnBi at room temperature was about 6.85 μΩ m.</description><identifier>ISSN: 0021-8979</identifier><identifier>EISSN: 1089-7550</identifier><identifier>DOI: 10.1063/1.4939811</identifier><identifier>CODEN: JAPIAU</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Applied physics ; Arc heating ; Bismuth ; CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS ; Coercivity ; Cold pressing ; Compressive properties ; Electric arc melting ; Electrical properties ; Electrochemical impedance spectroscopy ; Heat treatment ; Ingots ; Low temperature ; Magnetic properties ; Manganese ; MATERIALS SCIENCE ; Microhardness ; Motors ; Permanent magnets ; Physical properties ; Positive temperature coefficient ; Rare earth elements ; Sintering (powder metallurgy) ; Spectrum analysis ; Temperature ; Temperature dependence</subject><ispartof>Journal of applied physics, 2016-01, Vol.119 (3)</ispartof><rights>AIP Publishing LLC</rights><rights>2016 AIP Publishing LLC.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c389t-9e6d0fdd2b15ffe2e9b2d450c12d8745db78e08c3da984bfa7a56bf0c6e33be63</citedby><cites>FETCH-LOGICAL-c389t-9e6d0fdd2b15ffe2e9b2d450c12d8745db78e08c3da984bfa7a56bf0c6e33be63</cites><orcidid>0000-0002-6631-8201 ; 0000000266318201</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1243183$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Jiang, Xiujuan</creatorcontrib><creatorcontrib>Roosendaal, Timothy</creatorcontrib><creatorcontrib>Lu, Xiaochuan</creatorcontrib><creatorcontrib>Palasyuk, Olena</creatorcontrib><creatorcontrib>Dennis, Kevin W.</creatorcontrib><creatorcontrib>Dahl, Michael</creatorcontrib><creatorcontrib>Choi, Jung-Pyung</creatorcontrib><creatorcontrib>Polikarpov, Evgueni</creatorcontrib><creatorcontrib>Marinescu, Melania</creatorcontrib><creatorcontrib>Cui, Jun</creatorcontrib><creatorcontrib>Pacific Northwest National Lab. (PNNL), Richland, WA (United States)</creatorcontrib><title>Mechanical and electrical properties of low temperature phase MnBi</title><title>Journal of applied physics</title><description>Low temperature phase (LTP) manganese bismuth (MnBi) is a promising rare-earth-free permanent magnet material due to its high intrinsic coercivity and large positive temperature coefficient. While scientists are making progress on fabricating bulk MnBi magnets, engineers have begun considering MnBi magnets for motor applications. Physical properties other than magnetic ones could significantly affect motor design. Here, we report results of our investigation on the mechanical and electrical properties of bulk LTP MnBi and their temperature dependence. A MnBi ingot was prepared using an arc melting technique and subsequently underwent grinding, sieving, heat treatment, and cryomilling. The resultant powders with a particle size of ∼5 μm were magnetically aligned, cold pressed, and sintered at a predefined temperature. Micro-hardness testing was performed on a part of original ingot and we found that the hardness of MnBi was 109 ± 15 HV. The sintered magnets were subjected to compressive testing at different temperatures and it was observed that a sintered MnBi magnet fractured when the compressive stress exceeded 193 MPa at room temperature. Impedance spectra were obtained using electrochemical impedance spectroscopy at various temperatures and we found that the electrical resistance of MnBi at room temperature was about 6.85 μΩ m.</description><subject>Applied physics</subject><subject>Arc heating</subject><subject>Bismuth</subject><subject>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</subject><subject>Coercivity</subject><subject>Cold pressing</subject><subject>Compressive properties</subject><subject>Electric arc melting</subject><subject>Electrical properties</subject><subject>Electrochemical impedance spectroscopy</subject><subject>Heat treatment</subject><subject>Ingots</subject><subject>Low temperature</subject><subject>Magnetic properties</subject><subject>Manganese</subject><subject>MATERIALS SCIENCE</subject><subject>Microhardness</subject><subject>Motors</subject><subject>Permanent magnets</subject><subject>Physical properties</subject><subject>Positive temperature coefficient</subject><subject>Rare earth elements</subject><subject>Sintering (powder metallurgy)</subject><subject>Spectrum analysis</subject><subject>Temperature</subject><subject>Temperature dependence</subject><issn>0021-8979</issn><issn>1089-7550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqdkE1LAzEQhoMoWKsH_8GiJ4Wtmc1-JEdb_IIWL3oO2WRCt7SbNUkV_72pLXj3NMzwMPPMS8gl0AnQmt3BpBRMcIAjMgLKRd5UFT0mI0oLyLloxCk5C2FFKQBnYkSmC9RL1XdarTPVmwzXqKP_bQfvBvSxw5A5m63dVxZxkyYqbj1mw1IFzBb9tDsnJ1atA14c6pi8Pz68zZ7z-evTy-x-nmvGRcwF1oZaY4oWKmuxQNEWpqyohsLwpqxM23CkXDOjBC9bqxpV1a2lukbGWqzZmFzt97oQOxl0F5O6dn2fjCUUJUsfJeh6DyX7jy2GKFdu6_vkJQsoQAAtuUjUzZ7S3oXg0crBdxvlvyVQuctRgjzkmNjbPbu7qGLn-v_Bn87_gXIwlv0Ak7aAoQ</recordid><startdate>20160121</startdate><enddate>20160121</enddate><creator>Jiang, Xiujuan</creator><creator>Roosendaal, Timothy</creator><creator>Lu, Xiaochuan</creator><creator>Palasyuk, Olena</creator><creator>Dennis, Kevin W.</creator><creator>Dahl, Michael</creator><creator>Choi, Jung-Pyung</creator><creator>Polikarpov, Evgueni</creator><creator>Marinescu, Melania</creator><creator>Cui, Jun</creator><general>American Institute of Physics</general><general>American Institute of Physics (AIP)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-6631-8201</orcidid><orcidid>https://orcid.org/0000000266318201</orcidid></search><sort><creationdate>20160121</creationdate><title>Mechanical and electrical properties of low temperature phase MnBi</title><author>Jiang, Xiujuan ; Roosendaal, Timothy ; Lu, Xiaochuan ; Palasyuk, Olena ; Dennis, Kevin W. ; Dahl, Michael ; Choi, Jung-Pyung ; Polikarpov, Evgueni ; Marinescu, Melania ; Cui, Jun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c389t-9e6d0fdd2b15ffe2e9b2d450c12d8745db78e08c3da984bfa7a56bf0c6e33be63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Applied physics</topic><topic>Arc heating</topic><topic>Bismuth</topic><topic>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</topic><topic>Coercivity</topic><topic>Cold pressing</topic><topic>Compressive properties</topic><topic>Electric arc melting</topic><topic>Electrical properties</topic><topic>Electrochemical impedance spectroscopy</topic><topic>Heat treatment</topic><topic>Ingots</topic><topic>Low temperature</topic><topic>Magnetic properties</topic><topic>Manganese</topic><topic>MATERIALS SCIENCE</topic><topic>Microhardness</topic><topic>Motors</topic><topic>Permanent magnets</topic><topic>Physical properties</topic><topic>Positive temperature coefficient</topic><topic>Rare earth elements</topic><topic>Sintering (powder metallurgy)</topic><topic>Spectrum analysis</topic><topic>Temperature</topic><topic>Temperature dependence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jiang, Xiujuan</creatorcontrib><creatorcontrib>Roosendaal, Timothy</creatorcontrib><creatorcontrib>Lu, Xiaochuan</creatorcontrib><creatorcontrib>Palasyuk, Olena</creatorcontrib><creatorcontrib>Dennis, Kevin W.</creatorcontrib><creatorcontrib>Dahl, Michael</creatorcontrib><creatorcontrib>Choi, Jung-Pyung</creatorcontrib><creatorcontrib>Polikarpov, Evgueni</creatorcontrib><creatorcontrib>Marinescu, Melania</creatorcontrib><creatorcontrib>Cui, Jun</creatorcontrib><creatorcontrib>Pacific Northwest National Lab. (PNNL), Richland, WA (United States)</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Journal of applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jiang, Xiujuan</au><au>Roosendaal, Timothy</au><au>Lu, Xiaochuan</au><au>Palasyuk, Olena</au><au>Dennis, Kevin W.</au><au>Dahl, Michael</au><au>Choi, Jung-Pyung</au><au>Polikarpov, Evgueni</au><au>Marinescu, Melania</au><au>Cui, Jun</au><aucorp>Pacific Northwest National Lab. (PNNL), Richland, WA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mechanical and electrical properties of low temperature phase MnBi</atitle><jtitle>Journal of applied physics</jtitle><date>2016-01-21</date><risdate>2016</risdate><volume>119</volume><issue>3</issue><issn>0021-8979</issn><eissn>1089-7550</eissn><coden>JAPIAU</coden><abstract>Low temperature phase (LTP) manganese bismuth (MnBi) is a promising rare-earth-free permanent magnet material due to its high intrinsic coercivity and large positive temperature coefficient. While scientists are making progress on fabricating bulk MnBi magnets, engineers have begun considering MnBi magnets for motor applications. Physical properties other than magnetic ones could significantly affect motor design. Here, we report results of our investigation on the mechanical and electrical properties of bulk LTP MnBi and their temperature dependence. A MnBi ingot was prepared using an arc melting technique and subsequently underwent grinding, sieving, heat treatment, and cryomilling. The resultant powders with a particle size of ∼5 μm were magnetically aligned, cold pressed, and sintered at a predefined temperature. Micro-hardness testing was performed on a part of original ingot and we found that the hardness of MnBi was 109 ± 15 HV. The sintered magnets were subjected to compressive testing at different temperatures and it was observed that a sintered MnBi magnet fractured when the compressive stress exceeded 193 MPa at room temperature. Impedance spectra were obtained using electrochemical impedance spectroscopy at various temperatures and we found that the electrical resistance of MnBi at room temperature was about 6.85 μΩ m.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.4939811</doi><tpages>4</tpages><orcidid>https://orcid.org/0000-0002-6631-8201</orcidid><orcidid>https://orcid.org/0000000266318201</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-8979
ispartof Journal of applied physics, 2016-01, Vol.119 (3)
issn 0021-8979
1089-7550
language eng
recordid cdi_proquest_journals_2121910489
source American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)
subjects Applied physics
Arc heating
Bismuth
CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS
Coercivity
Cold pressing
Compressive properties
Electric arc melting
Electrical properties
Electrochemical impedance spectroscopy
Heat treatment
Ingots
Low temperature
Magnetic properties
Manganese
MATERIALS SCIENCE
Microhardness
Motors
Permanent magnets
Physical properties
Positive temperature coefficient
Rare earth elements
Sintering (powder metallurgy)
Spectrum analysis
Temperature
Temperature dependence
title Mechanical and electrical properties of low temperature phase MnBi
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T16%3A05%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mechanical%20and%20electrical%20properties%20of%20low%20temperature%20phase%20MnBi&rft.jtitle=Journal%20of%20applied%20physics&rft.au=Jiang,%20Xiujuan&rft.aucorp=Pacific%20Northwest%20National%20Lab.%20(PNNL),%20Richland,%20WA%20(United%20States)&rft.date=2016-01-21&rft.volume=119&rft.issue=3&rft.issn=0021-8979&rft.eissn=1089-7550&rft.coden=JAPIAU&rft_id=info:doi/10.1063/1.4939811&rft_dat=%3Cproquest_cross%3E2121910489%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c389t-9e6d0fdd2b15ffe2e9b2d450c12d8745db78e08c3da984bfa7a56bf0c6e33be63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2121910489&rft_id=info:pmid/&rfr_iscdi=true