Loading…

Direct imaging of radio-frequency modes via traveling wave magnetic resonance imaging

We demonstrate an experimental method for direct 2D and 3D imaging of magnetic radio-frequency (rf) field distribution in metal-dielectric structures based on traveling wave (TW) magnetic resonance imaging (MRI) at ultra-high field (>7 T). The typical apparatus would include an ultra-high field w...

Full description

Saved in:
Bibliographic Details
Published in:Journal of applied physics 2016-01, Vol.119 (2)
Main Authors: Tonyushkin, A., Deelchand, D. K., Van de Moortele, P.-F., Adriany, G., Kiruluta, A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We demonstrate an experimental method for direct 2D and 3D imaging of magnetic radio-frequency (rf) field distribution in metal-dielectric structures based on traveling wave (TW) magnetic resonance imaging (MRI) at ultra-high field (>7 T). The typical apparatus would include an ultra-high field whole body or small bore MRI scanner, waveguide elements filled with MRI active dielectrics with predefined electric and magnetic properties, and TW rf transmit-receive probes. We validated the technique by obtaining TW MR images of the magnetic field distribution of the rf modes of circular waveguide filled with deionized water in a 16.4 T small-bore MRI scanner and compared the MR images with numerical simulations. Our MRI technique opens up a practical non-perturbed way of imaging of previously inaccessible rf field distribution of modes inside various shapes metal waveguides with inserted dielectric objects, including waveguide mode converters and transformers.
ISSN:0021-8979
1089-7550
DOI:10.1063/1.4940019