Loading…

Edge insulating topological phases in a two-dimensional superconductor with long-range pairing

We study the zero-temperature phase diagram of a two-dimensional square lattice loaded by spinless fermions, with nearest-neighbor hopping and algebraically decaying pairing. We find that for sufficiently long-range pairing, new phases occur, not continuously connected with any short-range phase and...

Full description

Saved in:
Bibliographic Details
Published in:Physical review. B 2018-01, Vol.97 (4), Article 041109
Main Authors: Lepori, L., Giuliano, D., Paganelli, S.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We study the zero-temperature phase diagram of a two-dimensional square lattice loaded by spinless fermions, with nearest-neighbor hopping and algebraically decaying pairing. We find that for sufficiently long-range pairing, new phases occur, not continuously connected with any short-range phase and not belonging to the standard families of topological insulators/superconductors. These phases are signaled by the violation of the area law for the von Neumann entropy, by semi-integer Chern numbers, and by edge modes with nonzero mass. The latter feature results in the absence of single-fermion edge conductivity, present instead in the short-range limit. The definition of a bulk-topology and the presence of a bulk-boundary correspondence is suggested also for the long-range phases. Recent experimental proposals and advances open the possibility to probe the described long-range effects in near-future realistic setups.
ISSN:2469-9950
2469-9969
DOI:10.1103/PhysRevB.97.041109