Loading…
Electronic properties of one-dimensional nanostructures of the Bi2Se3 topological insulator
We theoretically study the electronic structure and spin properties of one-dimensional nanostructures of the prototypical bulk topological insulator Bi2Se3. Realistic models of experimentally observed Bi2Se3 nanowires and nanoribbons are considered using the tight-binding method. At low energies, th...
Saved in:
Published in: | Physical review. B 2018-04, Vol.97 (16) |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | 16 |
container_start_page | |
container_title | Physical review. B |
container_volume | 97 |
creator | Virk, Naunidh Autès, Gabriel Yazyev, Oleg V |
description | We theoretically study the electronic structure and spin properties of one-dimensional nanostructures of the prototypical bulk topological insulator Bi2Se3. Realistic models of experimentally observed Bi2Se3 nanowires and nanoribbons are considered using the tight-binding method. At low energies, the band structures are composed of a series of evenly spaced degenerate subbands resulting from circumferential confinement of the topological surface states. The direct band gaps due to the nontrivial π Berry phase show a clear dependence on the circumference. The spin-momentum locking of the topological surface states results in a pronounced 2π spin rotation around the circumference with the degree of spin polarization dependent on the momentum along the nanostructure. Overall, the band structures and spin textures are more complicated for nanoribbons, which expose two distinct facets. The effects of reduced dimensionality are rationalized with the help of a simple model that considers circumferential quantization of the topological surface states. Furthermore, the surface spin density induced by an electric current along the nanostructure shows a pronounced oscillatory dependence on the charge-carrier energy, which can be exploited in spintronics applications. |
doi_str_mv | 10.1103/PhysRevB.97.165411 |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2123172086</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2123172086</sourcerecordid><originalsourceid>FETCH-LOGICAL-p183t-9c39f183b67e87f4afd06f5e6e8720bcc4f45011fdfc3f6bc928e5a96ba0c8b3</originalsourceid><addsrcrecordid>eNo9jl1LwzAYhYMoOOb-gFcBr1vzJm3aXLoxP2Cg6O68GGn2xmXUpCap4L-3MPHqnAOHh4eQa2AlABO3L4ef9Irfy1I1Jci6AjgjM15JVSgl1fl_r9klWaR0ZIyBZKphakbe1z2aHIN3hg4xDBizw0SDpcFjsXef6JMLXvfUax9SjqPJYzw98gHp0vE3FDSHIfThw5np6Hwae51DvCIXVvcJF385J9v79Xb1WGyeH55Wd5tigFbkQhmh7NQ62WDb2ErbPZO2RjktzjpjKlvVDMDurRFWdkbxFmutZKeZaTsxJzcn7OT_NWLKu2MY46Scdhy4gAnSSvELGlNZBw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2123172086</pqid></control><display><type>article</type><title>Electronic properties of one-dimensional nanostructures of the Bi2Se3 topological insulator</title><source>American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list)</source><creator>Virk, Naunidh ; Autès, Gabriel ; Yazyev, Oleg V</creator><creatorcontrib>Virk, Naunidh ; Autès, Gabriel ; Yazyev, Oleg V</creatorcontrib><description>We theoretically study the electronic structure and spin properties of one-dimensional nanostructures of the prototypical bulk topological insulator Bi2Se3. Realistic models of experimentally observed Bi2Se3 nanowires and nanoribbons are considered using the tight-binding method. At low energies, the band structures are composed of a series of evenly spaced degenerate subbands resulting from circumferential confinement of the topological surface states. The direct band gaps due to the nontrivial π Berry phase show a clear dependence on the circumference. The spin-momentum locking of the topological surface states results in a pronounced 2π spin rotation around the circumference with the degree of spin polarization dependent on the momentum along the nanostructure. Overall, the band structures and spin textures are more complicated for nanoribbons, which expose two distinct facets. The effects of reduced dimensionality are rationalized with the help of a simple model that considers circumferential quantization of the topological surface states. Furthermore, the surface spin density induced by an electric current along the nanostructure shows a pronounced oscillatory dependence on the charge-carrier energy, which can be exploited in spintronics applications.</description><identifier>ISSN: 2469-9950</identifier><identifier>EISSN: 2469-9969</identifier><identifier>DOI: 10.1103/PhysRevB.97.165411</identifier><language>eng</language><publisher>College Park: American Physical Society</publisher><subject>Circumferences ; Current carriers ; Dependence ; Electron spin ; Electronic properties ; Electronic structure ; Momentum ; Nanostructure ; Nanowires ; Polarization (spin alignment) ; Spintronics</subject><ispartof>Physical review. B, 2018-04, Vol.97 (16)</ispartof><rights>Copyright American Physical Society Apr 15, 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Virk, Naunidh</creatorcontrib><creatorcontrib>Autès, Gabriel</creatorcontrib><creatorcontrib>Yazyev, Oleg V</creatorcontrib><title>Electronic properties of one-dimensional nanostructures of the Bi2Se3 topological insulator</title><title>Physical review. B</title><description>We theoretically study the electronic structure and spin properties of one-dimensional nanostructures of the prototypical bulk topological insulator Bi2Se3. Realistic models of experimentally observed Bi2Se3 nanowires and nanoribbons are considered using the tight-binding method. At low energies, the band structures are composed of a series of evenly spaced degenerate subbands resulting from circumferential confinement of the topological surface states. The direct band gaps due to the nontrivial π Berry phase show a clear dependence on the circumference. The spin-momentum locking of the topological surface states results in a pronounced 2π spin rotation around the circumference with the degree of spin polarization dependent on the momentum along the nanostructure. Overall, the band structures and spin textures are more complicated for nanoribbons, which expose two distinct facets. The effects of reduced dimensionality are rationalized with the help of a simple model that considers circumferential quantization of the topological surface states. Furthermore, the surface spin density induced by an electric current along the nanostructure shows a pronounced oscillatory dependence on the charge-carrier energy, which can be exploited in spintronics applications.</description><subject>Circumferences</subject><subject>Current carriers</subject><subject>Dependence</subject><subject>Electron spin</subject><subject>Electronic properties</subject><subject>Electronic structure</subject><subject>Momentum</subject><subject>Nanostructure</subject><subject>Nanowires</subject><subject>Polarization (spin alignment)</subject><subject>Spintronics</subject><issn>2469-9950</issn><issn>2469-9969</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNo9jl1LwzAYhYMoOOb-gFcBr1vzJm3aXLoxP2Cg6O68GGn2xmXUpCap4L-3MPHqnAOHh4eQa2AlABO3L4ef9Irfy1I1Jci6AjgjM15JVSgl1fl_r9klWaR0ZIyBZKphakbe1z2aHIN3hg4xDBizw0SDpcFjsXef6JMLXvfUax9SjqPJYzw98gHp0vE3FDSHIfThw5np6Hwae51DvCIXVvcJF385J9v79Xb1WGyeH55Wd5tigFbkQhmh7NQ62WDb2ErbPZO2RjktzjpjKlvVDMDurRFWdkbxFmutZKeZaTsxJzcn7OT_NWLKu2MY46Scdhy4gAnSSvELGlNZBw</recordid><startdate>20180409</startdate><enddate>20180409</enddate><creator>Virk, Naunidh</creator><creator>Autès, Gabriel</creator><creator>Yazyev, Oleg V</creator><general>American Physical Society</general><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>H8D</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20180409</creationdate><title>Electronic properties of one-dimensional nanostructures of the Bi2Se3 topological insulator</title><author>Virk, Naunidh ; Autès, Gabriel ; Yazyev, Oleg V</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p183t-9c39f183b67e87f4afd06f5e6e8720bcc4f45011fdfc3f6bc928e5a96ba0c8b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Circumferences</topic><topic>Current carriers</topic><topic>Dependence</topic><topic>Electron spin</topic><topic>Electronic properties</topic><topic>Electronic structure</topic><topic>Momentum</topic><topic>Nanostructure</topic><topic>Nanowires</topic><topic>Polarization (spin alignment)</topic><topic>Spintronics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Virk, Naunidh</creatorcontrib><creatorcontrib>Autès, Gabriel</creatorcontrib><creatorcontrib>Yazyev, Oleg V</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physical review. B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Virk, Naunidh</au><au>Autès, Gabriel</au><au>Yazyev, Oleg V</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electronic properties of one-dimensional nanostructures of the Bi2Se3 topological insulator</atitle><jtitle>Physical review. B</jtitle><date>2018-04-09</date><risdate>2018</risdate><volume>97</volume><issue>16</issue><issn>2469-9950</issn><eissn>2469-9969</eissn><abstract>We theoretically study the electronic structure and spin properties of one-dimensional nanostructures of the prototypical bulk topological insulator Bi2Se3. Realistic models of experimentally observed Bi2Se3 nanowires and nanoribbons are considered using the tight-binding method. At low energies, the band structures are composed of a series of evenly spaced degenerate subbands resulting from circumferential confinement of the topological surface states. The direct band gaps due to the nontrivial π Berry phase show a clear dependence on the circumference. The spin-momentum locking of the topological surface states results in a pronounced 2π spin rotation around the circumference with the degree of spin polarization dependent on the momentum along the nanostructure. Overall, the band structures and spin textures are more complicated for nanoribbons, which expose two distinct facets. The effects of reduced dimensionality are rationalized with the help of a simple model that considers circumferential quantization of the topological surface states. Furthermore, the surface spin density induced by an electric current along the nanostructure shows a pronounced oscillatory dependence on the charge-carrier energy, which can be exploited in spintronics applications.</abstract><cop>College Park</cop><pub>American Physical Society</pub><doi>10.1103/PhysRevB.97.165411</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2469-9950 |
ispartof | Physical review. B, 2018-04, Vol.97 (16) |
issn | 2469-9950 2469-9969 |
language | eng |
recordid | cdi_proquest_journals_2123172086 |
source | American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list) |
subjects | Circumferences Current carriers Dependence Electron spin Electronic properties Electronic structure Momentum Nanostructure Nanowires Polarization (spin alignment) Spintronics |
title | Electronic properties of one-dimensional nanostructures of the Bi2Se3 topological insulator |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T17%3A41%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electronic%20properties%20of%20one-dimensional%20nanostructures%20of%20the%20Bi2Se3%20topological%20insulator&rft.jtitle=Physical%20review.%20B&rft.au=Virk,%20Naunidh&rft.date=2018-04-09&rft.volume=97&rft.issue=16&rft.issn=2469-9950&rft.eissn=2469-9969&rft_id=info:doi/10.1103/PhysRevB.97.165411&rft_dat=%3Cproquest%3E2123172086%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p183t-9c39f183b67e87f4afd06f5e6e8720bcc4f45011fdfc3f6bc928e5a96ba0c8b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2123172086&rft_id=info:pmid/&rfr_iscdi=true |