Loading…

Electronic properties of one-dimensional nanostructures of the Bi2Se3 topological insulator

We theoretically study the electronic structure and spin properties of one-dimensional nanostructures of the prototypical bulk topological insulator Bi2Se3. Realistic models of experimentally observed Bi2Se3 nanowires and nanoribbons are considered using the tight-binding method. At low energies, th...

Full description

Saved in:
Bibliographic Details
Published in:Physical review. B 2018-04, Vol.97 (16)
Main Authors: Virk, Naunidh, Autès, Gabriel, Yazyev, Oleg V
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue 16
container_start_page
container_title Physical review. B
container_volume 97
creator Virk, Naunidh
Autès, Gabriel
Yazyev, Oleg V
description We theoretically study the electronic structure and spin properties of one-dimensional nanostructures of the prototypical bulk topological insulator Bi2Se3. Realistic models of experimentally observed Bi2Se3 nanowires and nanoribbons are considered using the tight-binding method. At low energies, the band structures are composed of a series of evenly spaced degenerate subbands resulting from circumferential confinement of the topological surface states. The direct band gaps due to the nontrivial π Berry phase show a clear dependence on the circumference. The spin-momentum locking of the topological surface states results in a pronounced 2π spin rotation around the circumference with the degree of spin polarization dependent on the momentum along the nanostructure. Overall, the band structures and spin textures are more complicated for nanoribbons, which expose two distinct facets. The effects of reduced dimensionality are rationalized with the help of a simple model that considers circumferential quantization of the topological surface states. Furthermore, the surface spin density induced by an electric current along the nanostructure shows a pronounced oscillatory dependence on the charge-carrier energy, which can be exploited in spintronics applications.
doi_str_mv 10.1103/PhysRevB.97.165411
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2123172086</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2123172086</sourcerecordid><originalsourceid>FETCH-LOGICAL-p183t-9c39f183b67e87f4afd06f5e6e8720bcc4f45011fdfc3f6bc928e5a96ba0c8b3</originalsourceid><addsrcrecordid>eNo9jl1LwzAYhYMoOOb-gFcBr1vzJm3aXLoxP2Cg6O68GGn2xmXUpCap4L-3MPHqnAOHh4eQa2AlABO3L4ef9Irfy1I1Jci6AjgjM15JVSgl1fl_r9klWaR0ZIyBZKphakbe1z2aHIN3hg4xDBizw0SDpcFjsXef6JMLXvfUax9SjqPJYzw98gHp0vE3FDSHIfThw5np6Hwae51DvCIXVvcJF385J9v79Xb1WGyeH55Wd5tigFbkQhmh7NQ62WDb2ErbPZO2RjktzjpjKlvVDMDurRFWdkbxFmutZKeZaTsxJzcn7OT_NWLKu2MY46Scdhy4gAnSSvELGlNZBw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2123172086</pqid></control><display><type>article</type><title>Electronic properties of one-dimensional nanostructures of the Bi2Se3 topological insulator</title><source>American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list)</source><creator>Virk, Naunidh ; Autès, Gabriel ; Yazyev, Oleg V</creator><creatorcontrib>Virk, Naunidh ; Autès, Gabriel ; Yazyev, Oleg V</creatorcontrib><description>We theoretically study the electronic structure and spin properties of one-dimensional nanostructures of the prototypical bulk topological insulator Bi2Se3. Realistic models of experimentally observed Bi2Se3 nanowires and nanoribbons are considered using the tight-binding method. At low energies, the band structures are composed of a series of evenly spaced degenerate subbands resulting from circumferential confinement of the topological surface states. The direct band gaps due to the nontrivial π Berry phase show a clear dependence on the circumference. The spin-momentum locking of the topological surface states results in a pronounced 2π spin rotation around the circumference with the degree of spin polarization dependent on the momentum along the nanostructure. Overall, the band structures and spin textures are more complicated for nanoribbons, which expose two distinct facets. The effects of reduced dimensionality are rationalized with the help of a simple model that considers circumferential quantization of the topological surface states. Furthermore, the surface spin density induced by an electric current along the nanostructure shows a pronounced oscillatory dependence on the charge-carrier energy, which can be exploited in spintronics applications.</description><identifier>ISSN: 2469-9950</identifier><identifier>EISSN: 2469-9969</identifier><identifier>DOI: 10.1103/PhysRevB.97.165411</identifier><language>eng</language><publisher>College Park: American Physical Society</publisher><subject>Circumferences ; Current carriers ; Dependence ; Electron spin ; Electronic properties ; Electronic structure ; Momentum ; Nanostructure ; Nanowires ; Polarization (spin alignment) ; Spintronics</subject><ispartof>Physical review. B, 2018-04, Vol.97 (16)</ispartof><rights>Copyright American Physical Society Apr 15, 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Virk, Naunidh</creatorcontrib><creatorcontrib>Autès, Gabriel</creatorcontrib><creatorcontrib>Yazyev, Oleg V</creatorcontrib><title>Electronic properties of one-dimensional nanostructures of the Bi2Se3 topological insulator</title><title>Physical review. B</title><description>We theoretically study the electronic structure and spin properties of one-dimensional nanostructures of the prototypical bulk topological insulator Bi2Se3. Realistic models of experimentally observed Bi2Se3 nanowires and nanoribbons are considered using the tight-binding method. At low energies, the band structures are composed of a series of evenly spaced degenerate subbands resulting from circumferential confinement of the topological surface states. The direct band gaps due to the nontrivial π Berry phase show a clear dependence on the circumference. The spin-momentum locking of the topological surface states results in a pronounced 2π spin rotation around the circumference with the degree of spin polarization dependent on the momentum along the nanostructure. Overall, the band structures and spin textures are more complicated for nanoribbons, which expose two distinct facets. The effects of reduced dimensionality are rationalized with the help of a simple model that considers circumferential quantization of the topological surface states. Furthermore, the surface spin density induced by an electric current along the nanostructure shows a pronounced oscillatory dependence on the charge-carrier energy, which can be exploited in spintronics applications.</description><subject>Circumferences</subject><subject>Current carriers</subject><subject>Dependence</subject><subject>Electron spin</subject><subject>Electronic properties</subject><subject>Electronic structure</subject><subject>Momentum</subject><subject>Nanostructure</subject><subject>Nanowires</subject><subject>Polarization (spin alignment)</subject><subject>Spintronics</subject><issn>2469-9950</issn><issn>2469-9969</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNo9jl1LwzAYhYMoOOb-gFcBr1vzJm3aXLoxP2Cg6O68GGn2xmXUpCap4L-3MPHqnAOHh4eQa2AlABO3L4ef9Irfy1I1Jci6AjgjM15JVSgl1fl_r9klWaR0ZIyBZKphakbe1z2aHIN3hg4xDBizw0SDpcFjsXef6JMLXvfUax9SjqPJYzw98gHp0vE3FDSHIfThw5np6Hwae51DvCIXVvcJF385J9v79Xb1WGyeH55Wd5tigFbkQhmh7NQ62WDb2ErbPZO2RjktzjpjKlvVDMDurRFWdkbxFmutZKeZaTsxJzcn7OT_NWLKu2MY46Scdhy4gAnSSvELGlNZBw</recordid><startdate>20180409</startdate><enddate>20180409</enddate><creator>Virk, Naunidh</creator><creator>Autès, Gabriel</creator><creator>Yazyev, Oleg V</creator><general>American Physical Society</general><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>H8D</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20180409</creationdate><title>Electronic properties of one-dimensional nanostructures of the Bi2Se3 topological insulator</title><author>Virk, Naunidh ; Autès, Gabriel ; Yazyev, Oleg V</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p183t-9c39f183b67e87f4afd06f5e6e8720bcc4f45011fdfc3f6bc928e5a96ba0c8b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Circumferences</topic><topic>Current carriers</topic><topic>Dependence</topic><topic>Electron spin</topic><topic>Electronic properties</topic><topic>Electronic structure</topic><topic>Momentum</topic><topic>Nanostructure</topic><topic>Nanowires</topic><topic>Polarization (spin alignment)</topic><topic>Spintronics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Virk, Naunidh</creatorcontrib><creatorcontrib>Autès, Gabriel</creatorcontrib><creatorcontrib>Yazyev, Oleg V</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physical review. B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Virk, Naunidh</au><au>Autès, Gabriel</au><au>Yazyev, Oleg V</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electronic properties of one-dimensional nanostructures of the Bi2Se3 topological insulator</atitle><jtitle>Physical review. B</jtitle><date>2018-04-09</date><risdate>2018</risdate><volume>97</volume><issue>16</issue><issn>2469-9950</issn><eissn>2469-9969</eissn><abstract>We theoretically study the electronic structure and spin properties of one-dimensional nanostructures of the prototypical bulk topological insulator Bi2Se3. Realistic models of experimentally observed Bi2Se3 nanowires and nanoribbons are considered using the tight-binding method. At low energies, the band structures are composed of a series of evenly spaced degenerate subbands resulting from circumferential confinement of the topological surface states. The direct band gaps due to the nontrivial π Berry phase show a clear dependence on the circumference. The spin-momentum locking of the topological surface states results in a pronounced 2π spin rotation around the circumference with the degree of spin polarization dependent on the momentum along the nanostructure. Overall, the band structures and spin textures are more complicated for nanoribbons, which expose two distinct facets. The effects of reduced dimensionality are rationalized with the help of a simple model that considers circumferential quantization of the topological surface states. Furthermore, the surface spin density induced by an electric current along the nanostructure shows a pronounced oscillatory dependence on the charge-carrier energy, which can be exploited in spintronics applications.</abstract><cop>College Park</cop><pub>American Physical Society</pub><doi>10.1103/PhysRevB.97.165411</doi></addata></record>
fulltext fulltext
identifier ISSN: 2469-9950
ispartof Physical review. B, 2018-04, Vol.97 (16)
issn 2469-9950
2469-9969
language eng
recordid cdi_proquest_journals_2123172086
source American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list)
subjects Circumferences
Current carriers
Dependence
Electron spin
Electronic properties
Electronic structure
Momentum
Nanostructure
Nanowires
Polarization (spin alignment)
Spintronics
title Electronic properties of one-dimensional nanostructures of the Bi2Se3 topological insulator
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T17%3A41%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electronic%20properties%20of%20one-dimensional%20nanostructures%20of%20the%20Bi2Se3%20topological%20insulator&rft.jtitle=Physical%20review.%20B&rft.au=Virk,%20Naunidh&rft.date=2018-04-09&rft.volume=97&rft.issue=16&rft.issn=2469-9950&rft.eissn=2469-9969&rft_id=info:doi/10.1103/PhysRevB.97.165411&rft_dat=%3Cproquest%3E2123172086%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p183t-9c39f183b67e87f4afd06f5e6e8720bcc4f45011fdfc3f6bc928e5a96ba0c8b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2123172086&rft_id=info:pmid/&rfr_iscdi=true