Loading…

An optimistic robust optimization approach to common set of weights in DEA

Data envelopment analysis models allow decision making units to select the weights of inputs and outputs that are the most advantageous for calculating efficiency scores. Common set of weights make a basis for comparison and ranking all decision making units under an identical condition. In this pap...

Full description

Saved in:
Bibliographic Details
Published in:Measurement : journal of the International Measurement Confederation 2016-11, Vol.93, p.67-73
Main Authors: Salahi, Maziar, Torabi, Narges, Amiri, Akbar
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c349t-55c2c90145d4d705631ce0aadee95203bdc3d14e2f6c7701ee3baa50d60730573
cites cdi_FETCH-LOGICAL-c349t-55c2c90145d4d705631ce0aadee95203bdc3d14e2f6c7701ee3baa50d60730573
container_end_page 73
container_issue
container_start_page 67
container_title Measurement : journal of the International Measurement Confederation
container_volume 93
creator Salahi, Maziar
Torabi, Narges
Amiri, Akbar
description Data envelopment analysis models allow decision making units to select the weights of inputs and outputs that are the most advantageous for calculating efficiency scores. Common set of weights make a basis for comparison and ranking all decision making units under an identical condition. In this paper, first we give the robust counterpart of the CCR model in envelopment form and show that it is the same as the optimistic robust counterpart of the multiplier form of the CCR model. Then the robust solutions for common set of weights under interval uncertainties are calculated using robust efficiency scores of units considering as ideal solutions. On two numerical examples, the performance of the new approach is compared with the approach developed by Omrani (2013) showing that it gives more reliable and better solutions.
doi_str_mv 10.1016/j.measurement.2016.06.049
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2123172657</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0263224116303414</els_id><sourcerecordid>2123172657</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-55c2c90145d4d705631ce0aadee95203bdc3d14e2f6c7701ee3baa50d60730573</originalsourceid><addsrcrecordid>eNqNUE1LAzEUDKJgrf6HiOddX5L9cI-l1i8KXhS8hTR5a1PczZpkFf31prYHj8LAg2Fm3ntDyDmDnAGrLjd5hyqMHjvsY84TlUNC0RyQCbuqRVYw_nJIJsArkXFesGNyEsIGACrRVBPyMOupG6LtbIhWU-9WY4h75ltF63qqhsE7pdc0Oqpd1yUqYNK09BPt6zoGant6vZidkqNWvQU8288peb5ZPM3vsuXj7f18tsy0KJqYlaXmugFWlKYwNZSVYBpBKYPYlBzEymhhWIG8rXRdA0MUK6VKMBXUAspaTMnFLjed9T5iiHLjRt-nlZIzLljNq19Vs1Np70Lw2MrB2075L8lAbquTG_mnOrmtTkJC0STvfOfF9MaHRS-DtthrNNajjtI4-4-UH0p7fcg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2123172657</pqid></control><display><type>article</type><title>An optimistic robust optimization approach to common set of weights in DEA</title><source>ScienceDirect Freedom Collection</source><creator>Salahi, Maziar ; Torabi, Narges ; Amiri, Akbar</creator><creatorcontrib>Salahi, Maziar ; Torabi, Narges ; Amiri, Akbar</creatorcontrib><description>Data envelopment analysis models allow decision making units to select the weights of inputs and outputs that are the most advantageous for calculating efficiency scores. Common set of weights make a basis for comparison and ranking all decision making units under an identical condition. In this paper, first we give the robust counterpart of the CCR model in envelopment form and show that it is the same as the optimistic robust counterpart of the multiplier form of the CCR model. Then the robust solutions for common set of weights under interval uncertainties are calculated using robust efficiency scores of units considering as ideal solutions. On two numerical examples, the performance of the new approach is compared with the approach developed by Omrani (2013) showing that it gives more reliable and better solutions.</description><identifier>ISSN: 0263-2241</identifier><identifier>EISSN: 1873-412X</identifier><identifier>DOI: 10.1016/j.measurement.2016.06.049</identifier><language>eng</language><publisher>London: Elsevier Ltd</publisher><subject>Common weights ; Computational efficiency ; Computing time ; Data envelopment analysis ; Decision analysis ; Decision making ; Interval uncertainty ; Mathematical models ; Numerical analysis ; Operations research ; Optimization ; Robust optimization ; Robustness (mathematics) ; Uncertainty</subject><ispartof>Measurement : journal of the International Measurement Confederation, 2016-11, Vol.93, p.67-73</ispartof><rights>2016 Elsevier Ltd</rights><rights>Copyright Elsevier Science Ltd. Nov 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349t-55c2c90145d4d705631ce0aadee95203bdc3d14e2f6c7701ee3baa50d60730573</citedby><cites>FETCH-LOGICAL-c349t-55c2c90145d4d705631ce0aadee95203bdc3d14e2f6c7701ee3baa50d60730573</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Salahi, Maziar</creatorcontrib><creatorcontrib>Torabi, Narges</creatorcontrib><creatorcontrib>Amiri, Akbar</creatorcontrib><title>An optimistic robust optimization approach to common set of weights in DEA</title><title>Measurement : journal of the International Measurement Confederation</title><description>Data envelopment analysis models allow decision making units to select the weights of inputs and outputs that are the most advantageous for calculating efficiency scores. Common set of weights make a basis for comparison and ranking all decision making units under an identical condition. In this paper, first we give the robust counterpart of the CCR model in envelopment form and show that it is the same as the optimistic robust counterpart of the multiplier form of the CCR model. Then the robust solutions for common set of weights under interval uncertainties are calculated using robust efficiency scores of units considering as ideal solutions. On two numerical examples, the performance of the new approach is compared with the approach developed by Omrani (2013) showing that it gives more reliable and better solutions.</description><subject>Common weights</subject><subject>Computational efficiency</subject><subject>Computing time</subject><subject>Data envelopment analysis</subject><subject>Decision analysis</subject><subject>Decision making</subject><subject>Interval uncertainty</subject><subject>Mathematical models</subject><subject>Numerical analysis</subject><subject>Operations research</subject><subject>Optimization</subject><subject>Robust optimization</subject><subject>Robustness (mathematics)</subject><subject>Uncertainty</subject><issn>0263-2241</issn><issn>1873-412X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqNUE1LAzEUDKJgrf6HiOddX5L9cI-l1i8KXhS8hTR5a1PczZpkFf31prYHj8LAg2Fm3ntDyDmDnAGrLjd5hyqMHjvsY84TlUNC0RyQCbuqRVYw_nJIJsArkXFesGNyEsIGACrRVBPyMOupG6LtbIhWU-9WY4h75ltF63qqhsE7pdc0Oqpd1yUqYNK09BPt6zoGant6vZidkqNWvQU8288peb5ZPM3vsuXj7f18tsy0KJqYlaXmugFWlKYwNZSVYBpBKYPYlBzEymhhWIG8rXRdA0MUK6VKMBXUAspaTMnFLjed9T5iiHLjRt-nlZIzLljNq19Vs1Np70Lw2MrB2075L8lAbquTG_mnOrmtTkJC0STvfOfF9MaHRS-DtthrNNajjtI4-4-UH0p7fcg</recordid><startdate>201611</startdate><enddate>201611</enddate><creator>Salahi, Maziar</creator><creator>Torabi, Narges</creator><creator>Amiri, Akbar</creator><general>Elsevier Ltd</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>201611</creationdate><title>An optimistic robust optimization approach to common set of weights in DEA</title><author>Salahi, Maziar ; Torabi, Narges ; Amiri, Akbar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-55c2c90145d4d705631ce0aadee95203bdc3d14e2f6c7701ee3baa50d60730573</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Common weights</topic><topic>Computational efficiency</topic><topic>Computing time</topic><topic>Data envelopment analysis</topic><topic>Decision analysis</topic><topic>Decision making</topic><topic>Interval uncertainty</topic><topic>Mathematical models</topic><topic>Numerical analysis</topic><topic>Operations research</topic><topic>Optimization</topic><topic>Robust optimization</topic><topic>Robustness (mathematics)</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Salahi, Maziar</creatorcontrib><creatorcontrib>Torabi, Narges</creatorcontrib><creatorcontrib>Amiri, Akbar</creatorcontrib><collection>CrossRef</collection><jtitle>Measurement : journal of the International Measurement Confederation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Salahi, Maziar</au><au>Torabi, Narges</au><au>Amiri, Akbar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An optimistic robust optimization approach to common set of weights in DEA</atitle><jtitle>Measurement : journal of the International Measurement Confederation</jtitle><date>2016-11</date><risdate>2016</risdate><volume>93</volume><spage>67</spage><epage>73</epage><pages>67-73</pages><issn>0263-2241</issn><eissn>1873-412X</eissn><abstract>Data envelopment analysis models allow decision making units to select the weights of inputs and outputs that are the most advantageous for calculating efficiency scores. Common set of weights make a basis for comparison and ranking all decision making units under an identical condition. In this paper, first we give the robust counterpart of the CCR model in envelopment form and show that it is the same as the optimistic robust counterpart of the multiplier form of the CCR model. Then the robust solutions for common set of weights under interval uncertainties are calculated using robust efficiency scores of units considering as ideal solutions. On two numerical examples, the performance of the new approach is compared with the approach developed by Omrani (2013) showing that it gives more reliable and better solutions.</abstract><cop>London</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.measurement.2016.06.049</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0263-2241
ispartof Measurement : journal of the International Measurement Confederation, 2016-11, Vol.93, p.67-73
issn 0263-2241
1873-412X
language eng
recordid cdi_proquest_journals_2123172657
source ScienceDirect Freedom Collection
subjects Common weights
Computational efficiency
Computing time
Data envelopment analysis
Decision analysis
Decision making
Interval uncertainty
Mathematical models
Numerical analysis
Operations research
Optimization
Robust optimization
Robustness (mathematics)
Uncertainty
title An optimistic robust optimization approach to common set of weights in DEA
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T22%3A32%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20optimistic%20robust%20optimization%20approach%20to%20common%20set%20of%20weights%20in%20DEA&rft.jtitle=Measurement%20:%20journal%20of%20the%20International%20Measurement%20Confederation&rft.au=Salahi,%20Maziar&rft.date=2016-11&rft.volume=93&rft.spage=67&rft.epage=73&rft.pages=67-73&rft.issn=0263-2241&rft.eissn=1873-412X&rft_id=info:doi/10.1016/j.measurement.2016.06.049&rft_dat=%3Cproquest_cross%3E2123172657%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c349t-55c2c90145d4d705631ce0aadee95203bdc3d14e2f6c7701ee3baa50d60730573%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2123172657&rft_id=info:pmid/&rfr_iscdi=true