Loading…

Tracing the nonequilibrium topological state of Chern insulators

Chern insulators exhibit fascinating properties, which originate from the topologically nontrivial state characterized by the Chern number. How these properties change if the system is quenched between topologically distinct phases is, however, not fully understood. In this paper, we investigate the...

Full description

Saved in:
Bibliographic Details
Published in:Physical review. B 2017-10, Vol.96 (15), Article 155122
Main Authors: Schüler, Michael, Werner, Philipp
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Chern insulators exhibit fascinating properties, which originate from the topologically nontrivial state characterized by the Chern number. How these properties change if the system is quenched between topologically distinct phases is, however, not fully understood. In this paper, we investigate the quench dynamics of the prototypical massive Dirac model for topological insulators in two dimensions. We consider both dissipationless dynamics and the effect of electron-phonon interactions, and ask how the transient dynamics and nonequilibrium steady states affect simple observables. Specifically, we discuss a time-dependent generalization of the Hall effect and the dichroism of the photoexcitation probability between left and right circularly polarized light. We present optimized schemes based on these observables, which can reveal the evolution of the topological state of the quenched system.
ISSN:2469-9950
2469-9969
DOI:10.1103/PhysRevB.96.155122