Loading…
Nonequilibrium nuclear spin distribution function in quantum dots subject to periodic pulses
Electron spin dephasing in a singly charged semiconductor quantum dot can partially be suppressed by periodic laser pulsing. We propose a semiclassical approach describing the decoherence of the electron spin polarization governed by the hyperfine interaction with the nuclear spins as well as the pr...
Saved in:
Published in: | Physical review. B 2017-11, Vol.96 (20), Article 205419 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Electron spin dephasing in a singly charged semiconductor quantum dot can partially be suppressed by periodic laser pulsing. We propose a semiclassical approach describing the decoherence of the electron spin polarization governed by the hyperfine interaction with the nuclear spins as well as the probabilistic nature of the photon absorption. We use the steady-state Floquet condition to analytically derive two subclasses of resonance conditions excellently predicting the peak locations in the part of the Overhauser field distribution which is projected in the direction of the external magnetic field. As a consequence of the periodic pulsing, a nonequilibrium distribution develops as a function of time. The numerical simulation of the coupled dynamics reveals the influence of the hyperfine coupling constant distribution onto the evolution of the electron spin polarization before the next laser pulse. Experimental indications are provided for both subclasses of resonance conditions. |
---|---|
ISSN: | 2469-9950 2469-9969 |
DOI: | 10.1103/PhysRevB.96.205419 |