Loading…

Synthesis and Characterization of Ni Doped ZnO Nanoparticles

This paper discerns key ideas and themes of the possibility of growing Ni doped ZnO nanoparticles by electrochemical method. The purpose is to study the growth mechanism and to optimize the parameters of this method. Upon successful synthesizing the samples, they were characterized using various tec...

Full description

Saved in:
Bibliographic Details
Published in:International Journal of Engineering and Manufacturing 2014-05, Vol.4 (1), p.10-17
Main Authors: Bhuiyan, M.R.A., Rahman, M.K.
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This paper discerns key ideas and themes of the possibility of growing Ni doped ZnO nanoparticles by electrochemical method. The purpose is to study the growth mechanism and to optimize the parameters of this method. Upon successful synthesizing the samples, they were characterized using various techniques. XRD, SEM, FTIR, photoluminescence spectroscopy together with the measured optical parameters obtained from UV-VIS absorption testing were analyzed. The X-ray diffraction (XRD) was measured by using a Bruker D8 Advance X-ray diffractometer with CuKα radiation. The surface morphology was investigated using an ‘EVO LS 15’ scanning electron microscope. The FTIR absorption spectra were recorded on a Perkin-Elmer GX FTIR system. The PL spectra were collected on a Jobin Yvon-Horiba Triax 190 spectrometer with a spectral resolution of 0.3 nm. UV-VIS absorption spectrum was recorded by using a UV-VIS spectrophotometer in the photon wavelength range between 300 and 600 nm. XRD pattern reveals that the polycrystalline of hexagonal wurtzite structure and the average size of the particles were estimated to be approximately 61 nm, which conform the nanoparticle. The FTIR result shows the stretching vibration of the Zn-O bond in Ni doped ZnO nanoparticles. There is a green emission peak centered at about 384 nm in the PL behavior. The band edge is shifted to the lower energy side of the Ni doped ZnO nanoparticle. Analyzing the results of various types of characterizations, it has been assessed that Ni doped ZnO nanoparticles was successfully synthesized.
ISSN:2305-3631
2306-5982
DOI:10.5815/ijem.2014.01.02