Loading…

Simulation study for model performance of multiresponse semiparametric regression

The objective of this paper is to evaluate the performance of multiresponse semiparametric regression model based on both of the function types and sample sizes. In general, multiresponse semiparametric regression model consists of parametric and nonparametric functions. This paper focuses on both l...

Full description

Saved in:
Bibliographic Details
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The objective of this paper is to evaluate the performance of multiresponse semiparametric regression model based on both of the function types and sample sizes. In general, multiresponse semiparametric regression model consists of parametric and nonparametric functions. This paper focuses on both linear and quadratic functions for parametric components and spline function for nonparametric component. Moreover, this model could also be seen as a spline semiparametric seemingly unrelated regression model. Simulation study is conducted by evaluating three combinations of parametric and nonparametric components, i.e. linear-trigonometric, quadratic-exponential, and multiple linear-polynomial functions respectively. Two criterias are used for assessing the model performance, i.e. R-square and Mean Square Error (MSE). The results show that both of the function types and sample sizes have significantly influenced to the model performance. In addition, this multiresponse semiparametric regression model yields the best performance at the small sample size and combination between multiple linear and polynomial functions as parametric and nonparametric components respectively. Moreover, the model performances at the big sample size tend to be similar for any combination of parametric and nonparametric components.
ISSN:0094-243X
1551-7616
DOI:10.1063/1.4937111