Loading…

A two-grid method with Richardson extrapolation for a semilinear convection-diffusion problem

A boundary value problem for a second-order semilinear singularly perturbed ordinary differential equation is considered. We use Newton and Picard iterations for a linearization. To solve the problem at each iteration we apply the difference scheme with the property of uniform with respect to the si...

Full description

Saved in:
Bibliographic Details
Format: Conference Proceeding
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c223t-708884080dfcb757c7bc7e5778ae084a083433fbdf1b7bad2ecc2c7ed65a855d3
cites
container_end_page
container_issue 1
container_start_page
container_title
container_volume 1684
description A boundary value problem for a second-order semilinear singularly perturbed ordinary differential equation is considered. We use Newton and Picard iterations for a linearization. To solve the problem at each iteration we apply the difference scheme with the property of uniform with respect to the singular perturbation parameter convergence. A modified Samarskii and central difference schemes on Shishkin mesh are considered. It is known that these schemes are almost second order accuracy uniformly with respect to the singular perturbation parameter. To decrease the required number of arithmetical operations for resolving the difference scheme, a two-grid method is proposed. To increase the accuracy of difference scheme, we investigate the possibility to apply Richardson extrapolation using known solutions of the difference scheme on both meshes. The comparison of modified Samarskii and central difference schemes is carried out. The results of some numerical experiments are discussed.
doi_str_mv 10.1063/1.4934332
format conference_proceeding
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2123849709</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2123849709</sourcerecordid><originalsourceid>FETCH-LOGICAL-c223t-708884080dfcb757c7bc7e5778ae084a083433fbdf1b7bad2ecc2c7ed65a855d3</originalsourceid><addsrcrecordid>eNotT8tKAzEADKJgrR78g4Dn1Dw32WMpvqAgiIIXKdk83JTdTU2y1s93Fz0NwwzzAOCa4BXBFbslK14zzhg9AQsiBEGyItUpWGBcc0Q5ez8HFznvMaa1lGoBPtawHCP6TMHC3pU2WngMpYUvwbQ62RwH6H5K0ofY6RIm5mOCGmbXhy4MTido4vDtzKwhG7wf8-w6pNh0rr8EZ1532V394xK83d-9bh7R9vnhabPeIkMpK0hipRTHCltvGimkkY2RTkwDtcOKa6zmS76xnjSy0ZY6Y-jksJXQSgjLluDmL3fq_RpdLrt9HNMwVe4ooUzxWuKa_QJwYVXa</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2123849709</pqid></control><display><type>conference_proceeding</type><title>A two-grid method with Richardson extrapolation for a semilinear convection-diffusion problem</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><description>A boundary value problem for a second-order semilinear singularly perturbed ordinary differential equation is considered. We use Newton and Picard iterations for a linearization. To solve the problem at each iteration we apply the difference scheme with the property of uniform with respect to the singular perturbation parameter convergence. A modified Samarskii and central difference schemes on Shishkin mesh are considered. It is known that these schemes are almost second order accuracy uniformly with respect to the singular perturbation parameter. To decrease the required number of arithmetical operations for resolving the difference scheme, a two-grid method is proposed. To increase the accuracy of difference scheme, we investigate the possibility to apply Richardson extrapolation using known solutions of the difference scheme on both meshes. The comparison of modified Samarskii and central difference schemes is carried out. The results of some numerical experiments are discussed.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/1.4934332</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Boundary value problems ; Convection-diffusion equation ; Differential equations ; Extrapolation ; Grid method ; Iterative methods ; Ordinary differential equations ; Parameter modification ; Picard iterations ; Singular perturbation</subject><ispartof>AIP conference proceedings, 2015, Vol.1684 (1)</ispartof><rights>2015 AIP Publishing LLC.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c223t-708884080dfcb757c7bc7e5778ae084a083433fbdf1b7bad2ecc2c7ed65a855d3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,780,784,789,790,23930,23931,25140,27925</link.rule.ids></links><search><title>A two-grid method with Richardson extrapolation for a semilinear convection-diffusion problem</title><title>AIP conference proceedings</title><description>A boundary value problem for a second-order semilinear singularly perturbed ordinary differential equation is considered. We use Newton and Picard iterations for a linearization. To solve the problem at each iteration we apply the difference scheme with the property of uniform with respect to the singular perturbation parameter convergence. A modified Samarskii and central difference schemes on Shishkin mesh are considered. It is known that these schemes are almost second order accuracy uniformly with respect to the singular perturbation parameter. To decrease the required number of arithmetical operations for resolving the difference scheme, a two-grid method is proposed. To increase the accuracy of difference scheme, we investigate the possibility to apply Richardson extrapolation using known solutions of the difference scheme on both meshes. The comparison of modified Samarskii and central difference schemes is carried out. The results of some numerical experiments are discussed.</description><subject>Boundary value problems</subject><subject>Convection-diffusion equation</subject><subject>Differential equations</subject><subject>Extrapolation</subject><subject>Grid method</subject><subject>Iterative methods</subject><subject>Ordinary differential equations</subject><subject>Parameter modification</subject><subject>Picard iterations</subject><subject>Singular perturbation</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2015</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNotT8tKAzEADKJgrR78g4Dn1Dw32WMpvqAgiIIXKdk83JTdTU2y1s93Fz0NwwzzAOCa4BXBFbslK14zzhg9AQsiBEGyItUpWGBcc0Q5ez8HFznvMaa1lGoBPtawHCP6TMHC3pU2WngMpYUvwbQ62RwH6H5K0ofY6RIm5mOCGmbXhy4MTido4vDtzKwhG7wf8-w6pNh0rr8EZ1532V394xK83d-9bh7R9vnhabPeIkMpK0hipRTHCltvGimkkY2RTkwDtcOKa6zmS76xnjSy0ZY6Y-jksJXQSgjLluDmL3fq_RpdLrt9HNMwVe4ooUzxWuKa_QJwYVXa</recordid><startdate>20151028</startdate><enddate>20151028</enddate><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20151028</creationdate><title>A two-grid method with Richardson extrapolation for a semilinear convection-diffusion problem</title></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c223t-708884080dfcb757c7bc7e5778ae084a083433fbdf1b7bad2ecc2c7ed65a855d3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Boundary value problems</topic><topic>Convection-diffusion equation</topic><topic>Differential equations</topic><topic>Extrapolation</topic><topic>Grid method</topic><topic>Iterative methods</topic><topic>Ordinary differential equations</topic><topic>Parameter modification</topic><topic>Picard iterations</topic><topic>Singular perturbation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A two-grid method with Richardson extrapolation for a semilinear convection-diffusion problem</atitle><btitle>AIP conference proceedings</btitle><date>2015-10-28</date><risdate>2015</risdate><volume>1684</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><abstract>A boundary value problem for a second-order semilinear singularly perturbed ordinary differential equation is considered. We use Newton and Picard iterations for a linearization. To solve the problem at each iteration we apply the difference scheme with the property of uniform with respect to the singular perturbation parameter convergence. A modified Samarskii and central difference schemes on Shishkin mesh are considered. It is known that these schemes are almost second order accuracy uniformly with respect to the singular perturbation parameter. To decrease the required number of arithmetical operations for resolving the difference scheme, a two-grid method is proposed. To increase the accuracy of difference scheme, we investigate the possibility to apply Richardson extrapolation using known solutions of the difference scheme on both meshes. The comparison of modified Samarskii and central difference schemes is carried out. The results of some numerical experiments are discussed.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.4934332</doi></addata></record>
fulltext fulltext
identifier ISSN: 0094-243X
ispartof AIP conference proceedings, 2015, Vol.1684 (1)
issn 0094-243X
1551-7616
language eng
recordid cdi_proquest_journals_2123849709
source American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)
subjects Boundary value problems
Convection-diffusion equation
Differential equations
Extrapolation
Grid method
Iterative methods
Ordinary differential equations
Parameter modification
Picard iterations
Singular perturbation
title A two-grid method with Richardson extrapolation for a semilinear convection-diffusion problem
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T04%3A10%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20two-grid%20method%20with%20Richardson%20extrapolation%20for%20a%20semilinear%20convection-diffusion%20problem&rft.btitle=AIP%20conference%20proceedings&rft.date=2015-10-28&rft.volume=1684&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft_id=info:doi/10.1063/1.4934332&rft_dat=%3Cproquest%3E2123849709%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c223t-708884080dfcb757c7bc7e5778ae084a083433fbdf1b7bad2ecc2c7ed65a855d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2123849709&rft_id=info:pmid/&rfr_iscdi=true