Loading…

Broadband ultrafast spatial self-phase modulation for topological insulator Bi2Te3 dispersions

Ultrathin topological insulator bismuth telluride (Bi2Te3) nanosheets with uniform hexagonal nanostructure have been synthesized by cost-effective solvothermal method. Broadband spatial self-phase modulation phenomena of these topological insulator nanosheets have been observed with 400 nm, 800 nm,...

Full description

Saved in:
Bibliographic Details
Published in:Applied physics letters 2015-10, Vol.107 (15)
Main Authors: Shi, Bingxin, Miao, Lili, Wang, Qingkai, Du, Juan, Tang, Pinghua, Liu, Jun, Zhao, Chujun, Wen, Shuangchun
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Ultrathin topological insulator bismuth telluride (Bi2Te3) nanosheets with uniform hexagonal nanostructure have been synthesized by cost-effective solvothermal method. Broadband spatial self-phase modulation phenomena of these topological insulator nanosheets have been observed with 400 nm, 800 nm, and 1070 nm ultrafast lasers. The experimental results suggest that this coherent light scattering is due to the broadband, ultrafast, and large third-order optical nonlinearity of Bi2Te3. With the pulsed laser excitation, the nonlinear refractive index (n2) of Bi2Te3 dispersion solution was measured to be ∼10−12 m2/W, and the third-order nonlinear susceptibility ∼10−7 esu. Our work may provide an inroad for developing the nonlinear optical applications based on topological insulators.
ISSN:0003-6951
1077-3118
DOI:10.1063/1.4932590