Loading…

Nb-doped Gd2O3 as charge-trapping layer for nonvolatile memory applications

The charge-trapping properties of Gd2O3 with different Nb doping levels are investigated using an Al/Al2O3/Gd2O3/SiO2/Si structure. Compared with the memory device with pure Gd2O3, the one with lightly Nb-doped Gd2O3 shows better charge-trapping characteristics, including higher programming speed (6...

Full description

Saved in:
Bibliographic Details
Published in:Applied physics letters 2015-10, Vol.107 (16)
Main Authors: Shi, R. P., Huang, X. D., Sin, Johnny K. O., Lai, P. T.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The charge-trapping properties of Gd2O3 with different Nb doping levels are investigated using an Al/Al2O3/Gd2O3/SiO2/Si structure. Compared with the memory device with pure Gd2O3, the one with lightly Nb-doped Gd2O3 shows better charge-trapping characteristics, including higher programming speed (6.5 V at +12 V programming voltage for 10 ms) and better retention property (92% retained charge at 85 °C after 104 s), due to its higher trapping efficiency that resulted from higher trap density and suppressed formation of a silicate interlayer at the Gd2O3/SiO2 interface induced by the Nb doping. Moreover, the one with heavily Nb-doped Gd2O3 shows improvement in erasing behavior but worse retention and lower programming speed than the one with lightly Nb-doped Gd2O3. Further analysis reveals that the Nb-doping level determines the type of dominant trap in the Nb-doped Gd2O3, thus leading to different charge-loss mechanisms and charge-trapping characteristics.
ISSN:0003-6951
1077-3118
DOI:10.1063/1.4934183