Loading…

Lateral electric-field control of giant magnetoresistance in Co/Cu/Fe/BaTiO3 multiferroic heterostructure

We report lateral electric-field-driven sizable changes in the magnetoresistance of Co/Cu/Fe tri-layered wires on BaTiO3 single crystal. While the observed change is marginal in the tetragonal phase of BaTiO3, it reaches over 40% in the orthorhombic and rhombohedral phases with an electric field of...

Full description

Saved in:
Bibliographic Details
Published in:Applied physics letters 2015-08, Vol.107 (7)
Main Authors: Savitha Pillai, S., Kojima, H., Itoh, M., Taniyama, T.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We report lateral electric-field-driven sizable changes in the magnetoresistance of Co/Cu/Fe tri-layered wires on BaTiO3 single crystal. While the observed change is marginal in the tetragonal phase of BaTiO3, it reaches over 40% in the orthorhombic and rhombohedral phases with an electric field of 66 kV/cm. We attribute it to possible electric-field-induced variations of the spin-dependent electronic structures, i.e., spin polarization, of the Fe via interfacial strain transfer from BaTiO3. The contrasting results for the different phases of BaTiO3 are discussed, associated with the distinct aspects of the ferroelectric polarization switching processes in each phase.
ISSN:0003-6951
1077-3118
DOI:10.1063/1.4929339