Loading…

Li transport in fresh and aged LiMn2O4 cathodes via electrochemical strain microscopy

Transport properties of Li+ mobile ions in fresh and aged LiMn2O4 battery cathodes were studied at the nanoscale via electrochemical strain microscopy (ESM), time spectroscopy, and voltage spectroscopy mapping. Both Vegard and plausible non-Vegard contributions to the ESM signal were identified in e...

Full description

Saved in:
Bibliographic Details
Published in:Journal of applied physics 2015-08, Vol.118 (7)
Main Authors: Luchkin, Sergey Yu, Romanyuk, Konstantin, Ivanov, Maxim, Kholkin, Andrei L.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Transport properties of Li+ mobile ions in fresh and aged LiMn2O4 battery cathodes were studied at the nanoscale via electrochemical strain microscopy (ESM), time spectroscopy, and voltage spectroscopy mapping. Both Vegard and plausible non-Vegard contributions to the ESM signal were identified in electrochemical hysteresis loops obtained on fresh and aged samples. In the fresh cathodes, the Vegard contribution dominates the signal, while in the aged samples different shape of hysteresis loops indicates an additional plausible non-Vegard contribution. Non-uniform spatial distribution of the electrochemical loop opening in LiMn2O4 particles studied in the aged samples indicates stronger variation of the Li diffusion coefficient at the microscale as compared to the fresh specimens. Time spectroscopy measurements revealed a suppression of the local Li diffusivity in aged samples. The mechanisms of the cathode aging are discussed in the context of observed nanoscale ESM response.
ISSN:0021-8979
1089-7550
DOI:10.1063/1.4927816