Loading…

Grain-growth effect on dielectric nonlinearity of BaTiO3-based multi-layer ceramic capacitors

A significant difference in dielectric nonlinearity was contrasted between fine- and coarse-grained BaTiO3-based multilayer ceramic capacitors. Grain growth resulted in a decrease in dielectric constant in low field but a steep increase with increase in alternating current field, which can be associ...

Full description

Saved in:
Bibliographic Details
Published in:Applied physics letters 2015-08, Vol.107 (7)
Main Authors: Yoon, Seok-Hyun, Kim, Mi-Yang, Nam, Chan-Hee, Seo, Jung-Wook, Wi, Sung-Kwon, Hur, Kang-Heon
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A significant difference in dielectric nonlinearity was contrasted between fine- and coarse-grained BaTiO3-based multilayer ceramic capacitors. Grain growth resulted in a decrease in dielectric constant in low field but a steep increase with increase in alternating current field, which can be associated with a decrease in reversible and a significant increase in irreversible domain wall contribution from Preisach analysis. Fine-grained specimens showed almost cubic structure despite ferroelectric domain contrasts, which is anticipated to significantly reduce strain incompatibility during domain wall motion, and clean domain boundaries with no lattice defects. However, coarse-grained specimens with high aspect ratio of the tetragonal lattice should accompany lattice distortion with increased intergranular constraints during domain wall motion, and many lattice defects were observed near domain boundaries. These results demonstrate experimentally the presence of weak pinning centers in coarse-grained specimens, which inhibit domain wall motion in low alternating current fields. Long-range motion occurs beyond the threshold field and results in an abrupt increase in dielectric constant.
ISSN:0003-6951
1077-3118
DOI:10.1063/1.4929149