Loading…
Electronic structure and magnetism of samarium and neodymium adatoms on free-standing graphene
The electronic structure of selected rare-earth atoms adsorbed on a free-standing graphene was investigated using methods beyond the conventional density functional theory (DFT+U, DFT+HIA, and DFT+ED). The influence of the electron correlations and the spin-orbit coupling on the magnetic properties...
Saved in:
Published in: | Physical review. B 2016-09, Vol.94 (12), p.125113, Article 125113 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The electronic structure of selected rare-earth atoms adsorbed on a free-standing graphene was investigated using methods beyond the conventional density functional theory (DFT+U, DFT+HIA, and DFT+ED). The influence of the electron correlations and the spin-orbit coupling on the magnetic properties has been examined. The DFT+U method predicts both atoms to carry local magnetic moments (spin and orbital) contrary to a nonmagnetic f6 (J = 0) ground-state configuration of Sm in the gas phase. Application of DFT+Hubbard-I (HIA) and DFT+exact diagonalization (ED) methods cures this problem, and yields a nonmagnetic ground state with six f electrons and J = 0 for the Sm adatom. Our calculations show that Nd adatom remains magnetic, with four localized f electrons and J = 4.0. These conclusions could be verified by STM and XAS experiments. |
---|---|
ISSN: | 2469-9950 2469-9969 |
DOI: | 10.1103/PhysRevB.94.125113 |