Loading…

Electrical detection of magnetic states in crossed nanowires using the topological Hall effect

We used micromagnetic simulations to investigate the spatial distributions of the effective magnetic fields induced by spin chirality in crossed nanowires with three characteristic magnetic structures: a radiated-shape, an antivortex, and a uniform-like states. Our results indicate that, unlike the...

Full description

Saved in:
Bibliographic Details
Published in:Applied physics letters 2017-03, Vol.110 (13)
Main Authors: Tanabe, Kenji, Yamada, Keisuke
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We used micromagnetic simulations to investigate the spatial distributions of the effective magnetic fields induced by spin chirality in crossed nanowires with three characteristic magnetic structures: a radiated-shape, an antivortex, and a uniform-like states. Our results indicate that, unlike the anomalous Hall effect, the topological Hall effect (which is related to the spin chirality) depends on both the polarity and the vorticity. Therefore, measuring the topological Hall effect can detect both the polarity and the vorticity simultaneously in crossed nanowires. This approach may be suitable for use as an elemental technique in the quest for a next-generation multi-value memory.
ISSN:0003-6951
1077-3118
DOI:10.1063/1.4979322