Loading…
Design of a Novel μ-Mixer
In this work, the efficiency of a new μ-mixer design is investigated. As in this type of devices the Reynolds number is low, mixing is diffusion dominated and it can be enhanced by creating secondary flows. In this study, we propose the introduction of helical inserts into a straight tube to create...
Saved in:
Published in: | Fluids (Basel) 2018-03, Vol.3 (1), p.10 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this work, the efficiency of a new μ-mixer design is investigated. As in this type of devices the Reynolds number is low, mixing is diffusion dominated and it can be enhanced by creating secondary flows. In this study, we propose the introduction of helical inserts into a straight tube to create swirling flow. The influence of the insert’s geometrical parameters (pitch and length of the propeller blades) and of the Reynolds number on the mixing efficiency and on the pressure drop are numerically investigated. The mixing efficiency of the device is assessed by calculating a number—i.e., the index of mixing efficiency—that quantifies the uniformity of concentration at the outlet of the device. The influence of the design parameters on the mixing efficiency is assessed by performing a series of ‘computational’ experiments, in which the values of the parameter are selected using design of experiments (DOE) methodology. Finally using the numerical data, appropriate design equations are formulated, which, for given values of the design parameters, can estimate with reasonable accuracy both the mixing efficiency and the pressure drop of the proposed mixing device. |
---|---|
ISSN: | 2311-5521 2311-5521 |
DOI: | 10.3390/fluids3010010 |