Loading…

Numerical study of 3D brine flow across ice can to analyze heat transfer characteristics

An ice can have a unique shape that cross-sectional area in top side larger than the bottom side. The difference of cross-sectional area influence heat transfer of ice, and it can to brine flow around one. Flow around an ice block is similar to flow around the square cylinder bluff body. In this pap...

Full description

Saved in:
Bibliographic Details
Main Authors: Safitra, Arrad Ghani, Prabowo
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue 1
container_start_page
container_title
container_volume 1788
creator Safitra, Arrad Ghani
Prabowo
description An ice can have a unique shape that cross-sectional area in top side larger than the bottom side. The difference of cross-sectional area influence heat transfer of ice, and it can to brine flow around one. Flow around an ice block is similar to flow around the square cylinder bluff body. In this paper, the comparison square body and rectangular body of ice can with an in-lined arrangement with brine concentration variation is investigated. The commercial CFD was used in 3D steady laminar model. SIMPLE algorithm has been employed for pressure and velocity coupling in this simulation. Setting boundary condition in both geometry is velocity inlet, V∞ = 0.002 m/s and wall ice can condition constant temperature T∞ = 0°C. An isotherm profile at the y position is discussed in detail and visualized in 2-D, so do the local surface Nusselt number and average surface Nusselt number. The highest surface Nusselt number average in square geometry the position of y = 0 is 129.67 at the 0.25 concentration of brine and then the lowest surface Nusselt number average in rectangular geometry the position of y = 1 is 0.82 at the same concentration.
doi_str_mv 10.1063/1.4968280
format conference_proceeding
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_2124692959</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2124692959</sourcerecordid><originalsourceid>FETCH-LOGICAL-p288t-19e5d02b38a33abda55aa0f4a1f57d7b39bb69d443a46deb9af63b7b1e8a0a73</originalsourceid><addsrcrecordid>eNp9kEtLAzEYRYMoWKsL_0HAnTA1r8lMllKfUHTTRXfhSyahU6aTMcko9ddbacGdq7s593C5CF1TMqNE8js6E0rWrCYnaELLkhaVpPIUTQhRomCCr87RRUobQpiqqnqCVm_j1sXWQodTHpsdDh7zB2xi2zvsu_CFwcaQEm6twxZ6nAOGHrrdt8NrBxnnCH3yLmK7hgg272UptzZdojMPXXJXx5yi5dPjcv5SLN6fX-f3i2JgdZ0LqlzZEGZ4DZyDaaAsAYgXQH1ZNZXhyhipGiE4CNk4o8BLbipDXQ0EKj5FNwftEMPH6FLWmzDG_cCkGWVCKqZKtaduD1SybYbchl4Psd1C3OnPEDXVx9P00Pj_YEr078t_Bf4DHgNviA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2124692959</pqid></control><display><type>conference_proceeding</type><title>Numerical study of 3D brine flow across ice can to analyze heat transfer characteristics</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><creator>Safitra, Arrad Ghani ; Prabowo</creator><contributor>Wijayanta, Agung Tri ; Suyitno ; Triyono, Joko ; Danardono, Dominicus ; Ariawan, Dody ; Surojo, Eko ; Anwar, Miftahul ; Hadi, Syamsul ; Triyono ; Ubaidillah ; Santoso, Budi ; Muhayat, Nurul ; Kristiawan, Budi</contributor><creatorcontrib>Safitra, Arrad Ghani ; Prabowo ; Wijayanta, Agung Tri ; Suyitno ; Triyono, Joko ; Danardono, Dominicus ; Ariawan, Dody ; Surojo, Eko ; Anwar, Miftahul ; Hadi, Syamsul ; Triyono ; Ubaidillah ; Santoso, Budi ; Muhayat, Nurul ; Kristiawan, Budi</creatorcontrib><description>An ice can have a unique shape that cross-sectional area in top side larger than the bottom side. The difference of cross-sectional area influence heat transfer of ice, and it can to brine flow around one. Flow around an ice block is similar to flow around the square cylinder bluff body. In this paper, the comparison square body and rectangular body of ice can with an in-lined arrangement with brine concentration variation is investigated. The commercial CFD was used in 3D steady laminar model. SIMPLE algorithm has been employed for pressure and velocity coupling in this simulation. Setting boundary condition in both geometry is velocity inlet, V∞ = 0.002 m/s and wall ice can condition constant temperature T∞ = 0°C. An isotherm profile at the y position is discussed in detail and visualized in 2-D, so do the local surface Nusselt number and average surface Nusselt number. The highest surface Nusselt number average in square geometry the position of y = 0 is 129.67 at the 0.25 concentration of brine and then the lowest surface Nusselt number average in rectangular geometry the position of y = 1 is 0.82 at the same concentration.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/1.4968280</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Boundary conditions ; Computational fluid dynamics ; Computer simulation ; Cross-sections ; Cylinders ; Fluid flow ; Geometry ; Heat transfer ; Mathematical models ; Nusselt number ; Saline water ; Three dimensional flow ; Three dimensional models ; Velocity coupling ; Viscosity</subject><ispartof>AIP conference proceedings, 2017, Vol.1788 (1)</ispartof><rights>Author(s)</rights><rights>2016 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,314,776,780,785,786,23909,23910,25118,27901,27902</link.rule.ids></links><search><contributor>Wijayanta, Agung Tri</contributor><contributor>Suyitno</contributor><contributor>Triyono, Joko</contributor><contributor>Danardono, Dominicus</contributor><contributor>Ariawan, Dody</contributor><contributor>Surojo, Eko</contributor><contributor>Anwar, Miftahul</contributor><contributor>Hadi, Syamsul</contributor><contributor>Triyono</contributor><contributor>Ubaidillah</contributor><contributor>Santoso, Budi</contributor><contributor>Muhayat, Nurul</contributor><contributor>Kristiawan, Budi</contributor><creatorcontrib>Safitra, Arrad Ghani</creatorcontrib><creatorcontrib>Prabowo</creatorcontrib><title>Numerical study of 3D brine flow across ice can to analyze heat transfer characteristics</title><title>AIP conference proceedings</title><description>An ice can have a unique shape that cross-sectional area in top side larger than the bottom side. The difference of cross-sectional area influence heat transfer of ice, and it can to brine flow around one. Flow around an ice block is similar to flow around the square cylinder bluff body. In this paper, the comparison square body and rectangular body of ice can with an in-lined arrangement with brine concentration variation is investigated. The commercial CFD was used in 3D steady laminar model. SIMPLE algorithm has been employed for pressure and velocity coupling in this simulation. Setting boundary condition in both geometry is velocity inlet, V∞ = 0.002 m/s and wall ice can condition constant temperature T∞ = 0°C. An isotherm profile at the y position is discussed in detail and visualized in 2-D, so do the local surface Nusselt number and average surface Nusselt number. The highest surface Nusselt number average in square geometry the position of y = 0 is 129.67 at the 0.25 concentration of brine and then the lowest surface Nusselt number average in rectangular geometry the position of y = 1 is 0.82 at the same concentration.</description><subject>Boundary conditions</subject><subject>Computational fluid dynamics</subject><subject>Computer simulation</subject><subject>Cross-sections</subject><subject>Cylinders</subject><subject>Fluid flow</subject><subject>Geometry</subject><subject>Heat transfer</subject><subject>Mathematical models</subject><subject>Nusselt number</subject><subject>Saline water</subject><subject>Three dimensional flow</subject><subject>Three dimensional models</subject><subject>Velocity coupling</subject><subject>Viscosity</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2017</creationdate><recordtype>conference_proceeding</recordtype><sourceid>AJDQP</sourceid><recordid>eNp9kEtLAzEYRYMoWKsL_0HAnTA1r8lMllKfUHTTRXfhSyahU6aTMcko9ddbacGdq7s593C5CF1TMqNE8js6E0rWrCYnaELLkhaVpPIUTQhRomCCr87RRUobQpiqqnqCVm_j1sXWQodTHpsdDh7zB2xi2zvsu_CFwcaQEm6twxZ6nAOGHrrdt8NrBxnnCH3yLmK7hgg272UptzZdojMPXXJXx5yi5dPjcv5SLN6fX-f3i2JgdZ0LqlzZEGZ4DZyDaaAsAYgXQH1ZNZXhyhipGiE4CNk4o8BLbipDXQ0EKj5FNwftEMPH6FLWmzDG_cCkGWVCKqZKtaduD1SybYbchl4Psd1C3OnPEDXVx9P00Pj_YEr078t_Bf4DHgNviA</recordid><startdate>20170103</startdate><enddate>20170103</enddate><creator>Safitra, Arrad Ghani</creator><creator>Prabowo</creator><general>American Institute of Physics</general><scope>AJDQP</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20170103</creationdate><title>Numerical study of 3D brine flow across ice can to analyze heat transfer characteristics</title><author>Safitra, Arrad Ghani ; Prabowo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p288t-19e5d02b38a33abda55aa0f4a1f57d7b39bb69d443a46deb9af63b7b1e8a0a73</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Boundary conditions</topic><topic>Computational fluid dynamics</topic><topic>Computer simulation</topic><topic>Cross-sections</topic><topic>Cylinders</topic><topic>Fluid flow</topic><topic>Geometry</topic><topic>Heat transfer</topic><topic>Mathematical models</topic><topic>Nusselt number</topic><topic>Saline water</topic><topic>Three dimensional flow</topic><topic>Three dimensional models</topic><topic>Velocity coupling</topic><topic>Viscosity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Safitra, Arrad Ghani</creatorcontrib><creatorcontrib>Prabowo</creatorcontrib><collection>AIP Open Access Journals</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Safitra, Arrad Ghani</au><au>Prabowo</au><au>Wijayanta, Agung Tri</au><au>Suyitno</au><au>Triyono, Joko</au><au>Danardono, Dominicus</au><au>Ariawan, Dody</au><au>Surojo, Eko</au><au>Anwar, Miftahul</au><au>Hadi, Syamsul</au><au>Triyono</au><au>Ubaidillah</au><au>Santoso, Budi</au><au>Muhayat, Nurul</au><au>Kristiawan, Budi</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Numerical study of 3D brine flow across ice can to analyze heat transfer characteristics</atitle><btitle>AIP conference proceedings</btitle><date>2017-01-03</date><risdate>2017</risdate><volume>1788</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>An ice can have a unique shape that cross-sectional area in top side larger than the bottom side. The difference of cross-sectional area influence heat transfer of ice, and it can to brine flow around one. Flow around an ice block is similar to flow around the square cylinder bluff body. In this paper, the comparison square body and rectangular body of ice can with an in-lined arrangement with brine concentration variation is investigated. The commercial CFD was used in 3D steady laminar model. SIMPLE algorithm has been employed for pressure and velocity coupling in this simulation. Setting boundary condition in both geometry is velocity inlet, V∞ = 0.002 m/s and wall ice can condition constant temperature T∞ = 0°C. An isotherm profile at the y position is discussed in detail and visualized in 2-D, so do the local surface Nusselt number and average surface Nusselt number. The highest surface Nusselt number average in square geometry the position of y = 0 is 129.67 at the 0.25 concentration of brine and then the lowest surface Nusselt number average in rectangular geometry the position of y = 1 is 0.82 at the same concentration.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.4968280</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0094-243X
ispartof AIP conference proceedings, 2017, Vol.1788 (1)
issn 0094-243X
1551-7616
language eng
recordid cdi_proquest_journals_2124692959
source American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)
subjects Boundary conditions
Computational fluid dynamics
Computer simulation
Cross-sections
Cylinders
Fluid flow
Geometry
Heat transfer
Mathematical models
Nusselt number
Saline water
Three dimensional flow
Three dimensional models
Velocity coupling
Viscosity
title Numerical study of 3D brine flow across ice can to analyze heat transfer characteristics
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T16%3A14%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Numerical%20study%20of%203D%20brine%20flow%20across%20ice%20can%20to%20analyze%20heat%20transfer%20characteristics&rft.btitle=AIP%20conference%20proceedings&rft.au=Safitra,%20Arrad%20Ghani&rft.date=2017-01-03&rft.volume=1788&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/1.4968280&rft_dat=%3Cproquest_scita%3E2124692959%3C/proquest_scita%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p288t-19e5d02b38a33abda55aa0f4a1f57d7b39bb69d443a46deb9af63b7b1e8a0a73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2124692959&rft_id=info:pmid/&rfr_iscdi=true