Loading…
Numerical study of 3D brine flow across ice can to analyze heat transfer characteristics
An ice can have a unique shape that cross-sectional area in top side larger than the bottom side. The difference of cross-sectional area influence heat transfer of ice, and it can to brine flow around one. Flow around an ice block is similar to flow around the square cylinder bluff body. In this pap...
Saved in:
Main Authors: | , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | 1 |
container_start_page | |
container_title | |
container_volume | 1788 |
creator | Safitra, Arrad Ghani Prabowo |
description | An ice can have a unique shape that cross-sectional area in top side larger than the bottom side. The difference of cross-sectional area influence heat transfer of ice, and it can to brine flow around one. Flow around an ice block is similar to flow around the square cylinder bluff body. In this paper, the comparison square body and rectangular body of ice can with an in-lined arrangement with brine concentration variation is investigated. The commercial CFD was used in 3D steady laminar model. SIMPLE algorithm has been employed for pressure and velocity coupling in this simulation. Setting boundary condition in both geometry is velocity inlet, V∞ = 0.002 m/s and wall ice can condition constant temperature T∞ = 0°C. An isotherm profile at the y position is discussed in detail and visualized in 2-D, so do the local surface Nusselt number and average surface Nusselt number. The highest surface Nusselt number average in square geometry the position of y = 0 is 129.67 at the 0.25 concentration of brine and then the lowest surface Nusselt number average in rectangular geometry the position of y = 1 is 0.82 at the same concentration. |
doi_str_mv | 10.1063/1.4968280 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_2124692959</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2124692959</sourcerecordid><originalsourceid>FETCH-LOGICAL-p288t-19e5d02b38a33abda55aa0f4a1f57d7b39bb69d443a46deb9af63b7b1e8a0a73</originalsourceid><addsrcrecordid>eNp9kEtLAzEYRYMoWKsL_0HAnTA1r8lMllKfUHTTRXfhSyahU6aTMcko9ddbacGdq7s593C5CF1TMqNE8js6E0rWrCYnaELLkhaVpPIUTQhRomCCr87RRUobQpiqqnqCVm_j1sXWQodTHpsdDh7zB2xi2zvsu_CFwcaQEm6twxZ6nAOGHrrdt8NrBxnnCH3yLmK7hgg272UptzZdojMPXXJXx5yi5dPjcv5SLN6fX-f3i2JgdZ0LqlzZEGZ4DZyDaaAsAYgXQH1ZNZXhyhipGiE4CNk4o8BLbipDXQ0EKj5FNwftEMPH6FLWmzDG_cCkGWVCKqZKtaduD1SybYbchl4Psd1C3OnPEDXVx9P00Pj_YEr078t_Bf4DHgNviA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2124692959</pqid></control><display><type>conference_proceeding</type><title>Numerical study of 3D brine flow across ice can to analyze heat transfer characteristics</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><creator>Safitra, Arrad Ghani ; Prabowo</creator><contributor>Wijayanta, Agung Tri ; Suyitno ; Triyono, Joko ; Danardono, Dominicus ; Ariawan, Dody ; Surojo, Eko ; Anwar, Miftahul ; Hadi, Syamsul ; Triyono ; Ubaidillah ; Santoso, Budi ; Muhayat, Nurul ; Kristiawan, Budi</contributor><creatorcontrib>Safitra, Arrad Ghani ; Prabowo ; Wijayanta, Agung Tri ; Suyitno ; Triyono, Joko ; Danardono, Dominicus ; Ariawan, Dody ; Surojo, Eko ; Anwar, Miftahul ; Hadi, Syamsul ; Triyono ; Ubaidillah ; Santoso, Budi ; Muhayat, Nurul ; Kristiawan, Budi</creatorcontrib><description>An ice can have a unique shape that cross-sectional area in top side larger than the bottom side. The difference of cross-sectional area influence heat transfer of ice, and it can to brine flow around one. Flow around an ice block is similar to flow around the square cylinder bluff body. In this paper, the comparison square body and rectangular body of ice can with an in-lined arrangement with brine concentration variation is investigated. The commercial CFD was used in 3D steady laminar model. SIMPLE algorithm has been employed for pressure and velocity coupling in this simulation. Setting boundary condition in both geometry is velocity inlet, V∞ = 0.002 m/s and wall ice can condition constant temperature T∞ = 0°C. An isotherm profile at the y position is discussed in detail and visualized in 2-D, so do the local surface Nusselt number and average surface Nusselt number. The highest surface Nusselt number average in square geometry the position of y = 0 is 129.67 at the 0.25 concentration of brine and then the lowest surface Nusselt number average in rectangular geometry the position of y = 1 is 0.82 at the same concentration.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/1.4968280</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Boundary conditions ; Computational fluid dynamics ; Computer simulation ; Cross-sections ; Cylinders ; Fluid flow ; Geometry ; Heat transfer ; Mathematical models ; Nusselt number ; Saline water ; Three dimensional flow ; Three dimensional models ; Velocity coupling ; Viscosity</subject><ispartof>AIP conference proceedings, 2017, Vol.1788 (1)</ispartof><rights>Author(s)</rights><rights>2016 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,314,776,780,785,786,23909,23910,25118,27901,27902</link.rule.ids></links><search><contributor>Wijayanta, Agung Tri</contributor><contributor>Suyitno</contributor><contributor>Triyono, Joko</contributor><contributor>Danardono, Dominicus</contributor><contributor>Ariawan, Dody</contributor><contributor>Surojo, Eko</contributor><contributor>Anwar, Miftahul</contributor><contributor>Hadi, Syamsul</contributor><contributor>Triyono</contributor><contributor>Ubaidillah</contributor><contributor>Santoso, Budi</contributor><contributor>Muhayat, Nurul</contributor><contributor>Kristiawan, Budi</contributor><creatorcontrib>Safitra, Arrad Ghani</creatorcontrib><creatorcontrib>Prabowo</creatorcontrib><title>Numerical study of 3D brine flow across ice can to analyze heat transfer characteristics</title><title>AIP conference proceedings</title><description>An ice can have a unique shape that cross-sectional area in top side larger than the bottom side. The difference of cross-sectional area influence heat transfer of ice, and it can to brine flow around one. Flow around an ice block is similar to flow around the square cylinder bluff body. In this paper, the comparison square body and rectangular body of ice can with an in-lined arrangement with brine concentration variation is investigated. The commercial CFD was used in 3D steady laminar model. SIMPLE algorithm has been employed for pressure and velocity coupling in this simulation. Setting boundary condition in both geometry is velocity inlet, V∞ = 0.002 m/s and wall ice can condition constant temperature T∞ = 0°C. An isotherm profile at the y position is discussed in detail and visualized in 2-D, so do the local surface Nusselt number and average surface Nusselt number. The highest surface Nusselt number average in square geometry the position of y = 0 is 129.67 at the 0.25 concentration of brine and then the lowest surface Nusselt number average in rectangular geometry the position of y = 1 is 0.82 at the same concentration.</description><subject>Boundary conditions</subject><subject>Computational fluid dynamics</subject><subject>Computer simulation</subject><subject>Cross-sections</subject><subject>Cylinders</subject><subject>Fluid flow</subject><subject>Geometry</subject><subject>Heat transfer</subject><subject>Mathematical models</subject><subject>Nusselt number</subject><subject>Saline water</subject><subject>Three dimensional flow</subject><subject>Three dimensional models</subject><subject>Velocity coupling</subject><subject>Viscosity</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2017</creationdate><recordtype>conference_proceeding</recordtype><sourceid>AJDQP</sourceid><recordid>eNp9kEtLAzEYRYMoWKsL_0HAnTA1r8lMllKfUHTTRXfhSyahU6aTMcko9ddbacGdq7s593C5CF1TMqNE8js6E0rWrCYnaELLkhaVpPIUTQhRomCCr87RRUobQpiqqnqCVm_j1sXWQodTHpsdDh7zB2xi2zvsu_CFwcaQEm6twxZ6nAOGHrrdt8NrBxnnCH3yLmK7hgg272UptzZdojMPXXJXx5yi5dPjcv5SLN6fX-f3i2JgdZ0LqlzZEGZ4DZyDaaAsAYgXQH1ZNZXhyhipGiE4CNk4o8BLbipDXQ0EKj5FNwftEMPH6FLWmzDG_cCkGWVCKqZKtaduD1SybYbchl4Psd1C3OnPEDXVx9P00Pj_YEr078t_Bf4DHgNviA</recordid><startdate>20170103</startdate><enddate>20170103</enddate><creator>Safitra, Arrad Ghani</creator><creator>Prabowo</creator><general>American Institute of Physics</general><scope>AJDQP</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20170103</creationdate><title>Numerical study of 3D brine flow across ice can to analyze heat transfer characteristics</title><author>Safitra, Arrad Ghani ; Prabowo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p288t-19e5d02b38a33abda55aa0f4a1f57d7b39bb69d443a46deb9af63b7b1e8a0a73</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Boundary conditions</topic><topic>Computational fluid dynamics</topic><topic>Computer simulation</topic><topic>Cross-sections</topic><topic>Cylinders</topic><topic>Fluid flow</topic><topic>Geometry</topic><topic>Heat transfer</topic><topic>Mathematical models</topic><topic>Nusselt number</topic><topic>Saline water</topic><topic>Three dimensional flow</topic><topic>Three dimensional models</topic><topic>Velocity coupling</topic><topic>Viscosity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Safitra, Arrad Ghani</creatorcontrib><creatorcontrib>Prabowo</creatorcontrib><collection>AIP Open Access Journals</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Safitra, Arrad Ghani</au><au>Prabowo</au><au>Wijayanta, Agung Tri</au><au>Suyitno</au><au>Triyono, Joko</au><au>Danardono, Dominicus</au><au>Ariawan, Dody</au><au>Surojo, Eko</au><au>Anwar, Miftahul</au><au>Hadi, Syamsul</au><au>Triyono</au><au>Ubaidillah</au><au>Santoso, Budi</au><au>Muhayat, Nurul</au><au>Kristiawan, Budi</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Numerical study of 3D brine flow across ice can to analyze heat transfer characteristics</atitle><btitle>AIP conference proceedings</btitle><date>2017-01-03</date><risdate>2017</risdate><volume>1788</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>An ice can have a unique shape that cross-sectional area in top side larger than the bottom side. The difference of cross-sectional area influence heat transfer of ice, and it can to brine flow around one. Flow around an ice block is similar to flow around the square cylinder bluff body. In this paper, the comparison square body and rectangular body of ice can with an in-lined arrangement with brine concentration variation is investigated. The commercial CFD was used in 3D steady laminar model. SIMPLE algorithm has been employed for pressure and velocity coupling in this simulation. Setting boundary condition in both geometry is velocity inlet, V∞ = 0.002 m/s and wall ice can condition constant temperature T∞ = 0°C. An isotherm profile at the y position is discussed in detail and visualized in 2-D, so do the local surface Nusselt number and average surface Nusselt number. The highest surface Nusselt number average in square geometry the position of y = 0 is 129.67 at the 0.25 concentration of brine and then the lowest surface Nusselt number average in rectangular geometry the position of y = 1 is 0.82 at the same concentration.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.4968280</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0094-243X |
ispartof | AIP conference proceedings, 2017, Vol.1788 (1) |
issn | 0094-243X 1551-7616 |
language | eng |
recordid | cdi_proquest_journals_2124692959 |
source | American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list) |
subjects | Boundary conditions Computational fluid dynamics Computer simulation Cross-sections Cylinders Fluid flow Geometry Heat transfer Mathematical models Nusselt number Saline water Three dimensional flow Three dimensional models Velocity coupling Viscosity |
title | Numerical study of 3D brine flow across ice can to analyze heat transfer characteristics |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T16%3A14%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Numerical%20study%20of%203D%20brine%20flow%20across%20ice%20can%20to%20analyze%20heat%20transfer%20characteristics&rft.btitle=AIP%20conference%20proceedings&rft.au=Safitra,%20Arrad%20Ghani&rft.date=2017-01-03&rft.volume=1788&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/1.4968280&rft_dat=%3Cproquest_scita%3E2124692959%3C/proquest_scita%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p288t-19e5d02b38a33abda55aa0f4a1f57d7b39bb69d443a46deb9af63b7b1e8a0a73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2124692959&rft_id=info:pmid/&rfr_iscdi=true |