Loading…

Optimization of liquid crystal devices based on weakly conductive layers for lensing and beam steering

Liquid crystals are mostly known for their use in displays, but over the past decade these materials have been applied in a number of other devices such as tunable lenses or beam steering devices. A common technique to realize a gradual electric field profile as is required to obtain a gradual refra...

Full description

Saved in:
Bibliographic Details
Published in:Journal of applied physics 2017-01, Vol.121 (2)
Main Authors: Beeckman, Jeroen, Nys, Inge, Willekens, Oliver, Neyts, Kristiaan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Liquid crystals are mostly known for their use in displays, but over the past decade these materials have been applied in a number of other devices such as tunable lenses or beam steering devices. A common technique to realize a gradual electric field profile as is required to obtain a gradual refractive index profile in these applications is the use of weakly conductive materials. The weakly conductive layers are able to spread the voltage profile which is applied through well-conductive electrodes at the side of the weakly conductive layer. The simulation and design of such structures is not trivial because two or three dimensional quasi-static electric field profiles need to be calculated. This is due to the fact that the resistivity of the conductive layers and the dielectric properties of the liquid crystal are coupled. An exact solution requires solving a number of coupled differential equations. In this paper, we develop a model to simulate the RC-effects with an approximate model.
ISSN:0021-8979
1089-7550
DOI:10.1063/1.4973939