Loading…
Complete integrability of nonlocal nonlinear Schrödinger equation
Based on the completeness relation for the squared solutions of the Lax operator L, we show that a subset of nonlocal equations from the hierarchy of nonlocal nonlinear Schrödinger equations (NLS) is a completely integrable system. The spectral properties of the Lax operator indicate that there are...
Saved in:
Published in: | Journal of mathematical physics 2017-01, Vol.58 (1) |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Based on the completeness relation for the squared solutions of the Lax operator L, we show that a subset of nonlocal equations from the hierarchy of nonlocal nonlinear Schrödinger equations (NLS) is a completely integrable system. The spectral properties of the Lax operator indicate that there are two types of soliton solutions. The relevant action-angle variables are parametrized by the scattering data of the Lax operator. The notion of the symplectic basis, which directly maps the variations of the potential of L to the variations of the action-angle variables has been generalized to the nonlocal case. We also show that the inverse scattering method can be viewed as a generalized Fourier transform. Using the trace identities and the symplectic basis, we construct the hierarchy Hamiltonian structures for the nonlocal NLS equations. |
---|---|
ISSN: | 0022-2488 1089-7658 |
DOI: | 10.1063/1.4974018 |