Loading…

Determination of detonation wave boundary angles via hydrocode simulations using CREST

A key input parameter to Detonation Shock Dynamics models is the angle that the propagating detonation wave makes with the charge edge. This is commonly referred to as the boundary angle, and is a property of the explosive/confiner material combination. Such angles can be determined: (i) experimenta...

Full description

Saved in:
Bibliographic Details
Main Authors: Whitworth, N. J., Childs, M.
Format: Conference Proceeding
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c258t-4b1f62f91ab96b178a3aa54f181f30d704335fd6ada801aae9647f9e69c5abc23
cites
container_end_page
container_issue 1
container_start_page
container_title
container_volume 1793
creator Whitworth, N. J.
Childs, M.
description A key input parameter to Detonation Shock Dynamics models is the angle that the propagating detonation wave makes with the charge edge. This is commonly referred to as the boundary angle, and is a property of the explosive/confiner material combination. Such angles can be determined: (i) experimentally from measured detonation wave-shapes, (ii) theoretically, or (iii) via hydrocode simulations using a reactive burn model. Of these approaches: (i) is difficult because of resolution, (ii) breaks down for certain configurations, while (iii) requires a well validated model. In this paper, the CREST reactive burn model, which has previously been successful in modelling a wide range of explosive phenomena, is used to simulate recent Detonation Confinement Sandwich Tests conducted at LANL using the insensitive high explosive PBX 9502. Simulated detonation wave-shapes in PBX 9502 for a number of different confiner materials and combinations closely match those recorded from the experiments. Boundary angles were subsequently extracted from the simulated results via a wave-shape analysis toolkit. The results shown demonstrate the usefulness of CREST in determining detonation wave boundary angles for a range of explosive/confiner material combinations.
doi_str_mv 10.1063/1.4971522
format conference_proceeding
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_2124701398</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2124701398</sourcerecordid><originalsourceid>FETCH-LOGICAL-c258t-4b1f62f91ab96b178a3aa54f181f30d704335fd6ada801aae9647f9e69c5abc23</originalsourceid><addsrcrecordid>eNp90E1LAzEQBuAgCtbqwX8Q8CZszSTZZHOU-gkFQat4C7ObpG5pN3WzW-m_t9aCN0_DwMN8vIScAxsBU-IKRtJoyDk_IAPIc8i0AnVIBowZmXEp3o_JSUpzxrjRuhiQtxvf-XZZN9jVsaExUOe7uO--cO1pGfvGYbuh2MwWPtF1jfRj49pYRedpqpf9YqcT7VPdzOj4-fZlekqOAi6SP9vXIXm9u52OH7LJ0_3j-HqSVTwvukyWEBQPBrA0qgRdoEDMZYACgmBOMylEHpxChwUDRG-U1MF4Zaocy4qLIbn4nbtq42fvU2fnsW-b7UrLgUvNQJhiqy5_VarqbnesXbX1cvuUBWZ_crNg97n9h9ex_YN25YL4BsGabwE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2124701398</pqid></control><display><type>conference_proceeding</type><title>Determination of detonation wave boundary angles via hydrocode simulations using CREST</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><creator>Whitworth, N. J. ; Childs, M.</creator><contributor>Peiris, Su ; Ravelo, Ramon ; Chau, Ricky ; Oleynik, Ivan ; Germann, Timothy ; Sewell, Tommy</contributor><creatorcontrib>Whitworth, N. J. ; Childs, M. ; Peiris, Su ; Ravelo, Ramon ; Chau, Ricky ; Oleynik, Ivan ; Germann, Timothy ; Sewell, Tommy</creatorcontrib><description>A key input parameter to Detonation Shock Dynamics models is the angle that the propagating detonation wave makes with the charge edge. This is commonly referred to as the boundary angle, and is a property of the explosive/confiner material combination. Such angles can be determined: (i) experimentally from measured detonation wave-shapes, (ii) theoretically, or (iii) via hydrocode simulations using a reactive burn model. Of these approaches: (i) is difficult because of resolution, (ii) breaks down for certain configurations, while (iii) requires a well validated model. In this paper, the CREST reactive burn model, which has previously been successful in modelling a wide range of explosive phenomena, is used to simulate recent Detonation Confinement Sandwich Tests conducted at LANL using the insensitive high explosive PBX 9502. Simulated detonation wave-shapes in PBX 9502 for a number of different confiner materials and combinations closely match those recorded from the experiments. Boundary angles were subsequently extracted from the simulated results via a wave-shape analysis toolkit. The results shown demonstrate the usefulness of CREST in determining detonation wave boundary angles for a range of explosive/confiner material combinations.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/1.4971522</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Computer simulation ; Detonation waves ; PBX (explosives) ; Shock wave propagation ; Simulation</subject><ispartof>AIP conference proceedings, 2017, Vol.1793 (1)</ispartof><rights>Author(s)</rights><rights>2017 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c258t-4b1f62f91ab96b178a3aa54f181f30d704335fd6ada801aae9647f9e69c5abc23</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,314,780,784,789,790,23930,23931,25140,27924,27925</link.rule.ids></links><search><contributor>Peiris, Su</contributor><contributor>Ravelo, Ramon</contributor><contributor>Chau, Ricky</contributor><contributor>Oleynik, Ivan</contributor><contributor>Germann, Timothy</contributor><contributor>Sewell, Tommy</contributor><creatorcontrib>Whitworth, N. J.</creatorcontrib><creatorcontrib>Childs, M.</creatorcontrib><title>Determination of detonation wave boundary angles via hydrocode simulations using CREST</title><title>AIP conference proceedings</title><description>A key input parameter to Detonation Shock Dynamics models is the angle that the propagating detonation wave makes with the charge edge. This is commonly referred to as the boundary angle, and is a property of the explosive/confiner material combination. Such angles can be determined: (i) experimentally from measured detonation wave-shapes, (ii) theoretically, or (iii) via hydrocode simulations using a reactive burn model. Of these approaches: (i) is difficult because of resolution, (ii) breaks down for certain configurations, while (iii) requires a well validated model. In this paper, the CREST reactive burn model, which has previously been successful in modelling a wide range of explosive phenomena, is used to simulate recent Detonation Confinement Sandwich Tests conducted at LANL using the insensitive high explosive PBX 9502. Simulated detonation wave-shapes in PBX 9502 for a number of different confiner materials and combinations closely match those recorded from the experiments. Boundary angles were subsequently extracted from the simulated results via a wave-shape analysis toolkit. The results shown demonstrate the usefulness of CREST in determining detonation wave boundary angles for a range of explosive/confiner material combinations.</description><subject>Computer simulation</subject><subject>Detonation waves</subject><subject>PBX (explosives)</subject><subject>Shock wave propagation</subject><subject>Simulation</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2017</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNp90E1LAzEQBuAgCtbqwX8Q8CZszSTZZHOU-gkFQat4C7ObpG5pN3WzW-m_t9aCN0_DwMN8vIScAxsBU-IKRtJoyDk_IAPIc8i0AnVIBowZmXEp3o_JSUpzxrjRuhiQtxvf-XZZN9jVsaExUOe7uO--cO1pGfvGYbuh2MwWPtF1jfRj49pYRedpqpf9YqcT7VPdzOj4-fZlekqOAi6SP9vXIXm9u52OH7LJ0_3j-HqSVTwvukyWEBQPBrA0qgRdoEDMZYACgmBOMylEHpxChwUDRG-U1MF4Zaocy4qLIbn4nbtq42fvU2fnsW-b7UrLgUvNQJhiqy5_VarqbnesXbX1cvuUBWZ_crNg97n9h9ex_YN25YL4BsGabwE</recordid><startdate>20170113</startdate><enddate>20170113</enddate><creator>Whitworth, N. J.</creator><creator>Childs, M.</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20170113</creationdate><title>Determination of detonation wave boundary angles via hydrocode simulations using CREST</title><author>Whitworth, N. J. ; Childs, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c258t-4b1f62f91ab96b178a3aa54f181f30d704335fd6ada801aae9647f9e69c5abc23</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Computer simulation</topic><topic>Detonation waves</topic><topic>PBX (explosives)</topic><topic>Shock wave propagation</topic><topic>Simulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Whitworth, N. J.</creatorcontrib><creatorcontrib>Childs, M.</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Whitworth, N. J.</au><au>Childs, M.</au><au>Peiris, Su</au><au>Ravelo, Ramon</au><au>Chau, Ricky</au><au>Oleynik, Ivan</au><au>Germann, Timothy</au><au>Sewell, Tommy</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Determination of detonation wave boundary angles via hydrocode simulations using CREST</atitle><btitle>AIP conference proceedings</btitle><date>2017-01-13</date><risdate>2017</risdate><volume>1793</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>A key input parameter to Detonation Shock Dynamics models is the angle that the propagating detonation wave makes with the charge edge. This is commonly referred to as the boundary angle, and is a property of the explosive/confiner material combination. Such angles can be determined: (i) experimentally from measured detonation wave-shapes, (ii) theoretically, or (iii) via hydrocode simulations using a reactive burn model. Of these approaches: (i) is difficult because of resolution, (ii) breaks down for certain configurations, while (iii) requires a well validated model. In this paper, the CREST reactive burn model, which has previously been successful in modelling a wide range of explosive phenomena, is used to simulate recent Detonation Confinement Sandwich Tests conducted at LANL using the insensitive high explosive PBX 9502. Simulated detonation wave-shapes in PBX 9502 for a number of different confiner materials and combinations closely match those recorded from the experiments. Boundary angles were subsequently extracted from the simulated results via a wave-shape analysis toolkit. The results shown demonstrate the usefulness of CREST in determining detonation wave boundary angles for a range of explosive/confiner material combinations.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.4971522</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0094-243X
ispartof AIP conference proceedings, 2017, Vol.1793 (1)
issn 0094-243X
1551-7616
language eng
recordid cdi_proquest_journals_2124701398
source American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)
subjects Computer simulation
Detonation waves
PBX (explosives)
Shock wave propagation
Simulation
title Determination of detonation wave boundary angles via hydrocode simulations using CREST
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T08%3A34%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Determination%20of%20detonation%20wave%20boundary%20angles%20via%20hydrocode%20simulations%20using%20CREST&rft.btitle=AIP%20conference%20proceedings&rft.au=Whitworth,%20N.%20J.&rft.date=2017-01-13&rft.volume=1793&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/1.4971522&rft_dat=%3Cproquest_scita%3E2124701398%3C/proquest_scita%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c258t-4b1f62f91ab96b178a3aa54f181f30d704335fd6ada801aae9647f9e69c5abc23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2124701398&rft_id=info:pmid/&rfr_iscdi=true