Loading…
Determination of detonation wave boundary angles via hydrocode simulations using CREST
A key input parameter to Detonation Shock Dynamics models is the angle that the propagating detonation wave makes with the charge edge. This is commonly referred to as the boundary angle, and is a property of the explosive/confiner material combination. Such angles can be determined: (i) experimenta...
Saved in:
Main Authors: | , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c258t-4b1f62f91ab96b178a3aa54f181f30d704335fd6ada801aae9647f9e69c5abc23 |
---|---|
cites | |
container_end_page | |
container_issue | 1 |
container_start_page | |
container_title | |
container_volume | 1793 |
creator | Whitworth, N. J. Childs, M. |
description | A key input parameter to Detonation Shock Dynamics models is the angle that the propagating detonation wave makes with the charge edge. This is commonly referred to as the boundary angle, and is a property of the explosive/confiner material combination. Such angles can be determined: (i) experimentally from measured detonation wave-shapes, (ii) theoretically, or (iii) via hydrocode simulations using a reactive burn model. Of these approaches: (i) is difficult because of resolution, (ii) breaks down for certain configurations, while (iii) requires a well validated model.
In this paper, the CREST reactive burn model, which has previously been successful in modelling a wide range of explosive phenomena, is used to simulate recent Detonation Confinement Sandwich Tests conducted at LANL using the insensitive high explosive PBX 9502. Simulated detonation wave-shapes in PBX 9502 for a number of different confiner materials and combinations closely match those recorded from the experiments. Boundary angles were subsequently extracted from the simulated results via a wave-shape analysis toolkit. The results shown demonstrate the usefulness of CREST in determining detonation wave boundary angles for a range of explosive/confiner material combinations. |
doi_str_mv | 10.1063/1.4971522 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_2124701398</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2124701398</sourcerecordid><originalsourceid>FETCH-LOGICAL-c258t-4b1f62f91ab96b178a3aa54f181f30d704335fd6ada801aae9647f9e69c5abc23</originalsourceid><addsrcrecordid>eNp90E1LAzEQBuAgCtbqwX8Q8CZszSTZZHOU-gkFQat4C7ObpG5pN3WzW-m_t9aCN0_DwMN8vIScAxsBU-IKRtJoyDk_IAPIc8i0AnVIBowZmXEp3o_JSUpzxrjRuhiQtxvf-XZZN9jVsaExUOe7uO--cO1pGfvGYbuh2MwWPtF1jfRj49pYRedpqpf9YqcT7VPdzOj4-fZlekqOAi6SP9vXIXm9u52OH7LJ0_3j-HqSVTwvukyWEBQPBrA0qgRdoEDMZYACgmBOMylEHpxChwUDRG-U1MF4Zaocy4qLIbn4nbtq42fvU2fnsW-b7UrLgUvNQJhiqy5_VarqbnesXbX1cvuUBWZ_crNg97n9h9ex_YN25YL4BsGabwE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2124701398</pqid></control><display><type>conference_proceeding</type><title>Determination of detonation wave boundary angles via hydrocode simulations using CREST</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><creator>Whitworth, N. J. ; Childs, M.</creator><contributor>Peiris, Su ; Ravelo, Ramon ; Chau, Ricky ; Oleynik, Ivan ; Germann, Timothy ; Sewell, Tommy</contributor><creatorcontrib>Whitworth, N. J. ; Childs, M. ; Peiris, Su ; Ravelo, Ramon ; Chau, Ricky ; Oleynik, Ivan ; Germann, Timothy ; Sewell, Tommy</creatorcontrib><description>A key input parameter to Detonation Shock Dynamics models is the angle that the propagating detonation wave makes with the charge edge. This is commonly referred to as the boundary angle, and is a property of the explosive/confiner material combination. Such angles can be determined: (i) experimentally from measured detonation wave-shapes, (ii) theoretically, or (iii) via hydrocode simulations using a reactive burn model. Of these approaches: (i) is difficult because of resolution, (ii) breaks down for certain configurations, while (iii) requires a well validated model.
In this paper, the CREST reactive burn model, which has previously been successful in modelling a wide range of explosive phenomena, is used to simulate recent Detonation Confinement Sandwich Tests conducted at LANL using the insensitive high explosive PBX 9502. Simulated detonation wave-shapes in PBX 9502 for a number of different confiner materials and combinations closely match those recorded from the experiments. Boundary angles were subsequently extracted from the simulated results via a wave-shape analysis toolkit. The results shown demonstrate the usefulness of CREST in determining detonation wave boundary angles for a range of explosive/confiner material combinations.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/1.4971522</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Computer simulation ; Detonation waves ; PBX (explosives) ; Shock wave propagation ; Simulation</subject><ispartof>AIP conference proceedings, 2017, Vol.1793 (1)</ispartof><rights>Author(s)</rights><rights>2017 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c258t-4b1f62f91ab96b178a3aa54f181f30d704335fd6ada801aae9647f9e69c5abc23</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,314,780,784,789,790,23930,23931,25140,27924,27925</link.rule.ids></links><search><contributor>Peiris, Su</contributor><contributor>Ravelo, Ramon</contributor><contributor>Chau, Ricky</contributor><contributor>Oleynik, Ivan</contributor><contributor>Germann, Timothy</contributor><contributor>Sewell, Tommy</contributor><creatorcontrib>Whitworth, N. J.</creatorcontrib><creatorcontrib>Childs, M.</creatorcontrib><title>Determination of detonation wave boundary angles via hydrocode simulations using CREST</title><title>AIP conference proceedings</title><description>A key input parameter to Detonation Shock Dynamics models is the angle that the propagating detonation wave makes with the charge edge. This is commonly referred to as the boundary angle, and is a property of the explosive/confiner material combination. Such angles can be determined: (i) experimentally from measured detonation wave-shapes, (ii) theoretically, or (iii) via hydrocode simulations using a reactive burn model. Of these approaches: (i) is difficult because of resolution, (ii) breaks down for certain configurations, while (iii) requires a well validated model.
In this paper, the CREST reactive burn model, which has previously been successful in modelling a wide range of explosive phenomena, is used to simulate recent Detonation Confinement Sandwich Tests conducted at LANL using the insensitive high explosive PBX 9502. Simulated detonation wave-shapes in PBX 9502 for a number of different confiner materials and combinations closely match those recorded from the experiments. Boundary angles were subsequently extracted from the simulated results via a wave-shape analysis toolkit. The results shown demonstrate the usefulness of CREST in determining detonation wave boundary angles for a range of explosive/confiner material combinations.</description><subject>Computer simulation</subject><subject>Detonation waves</subject><subject>PBX (explosives)</subject><subject>Shock wave propagation</subject><subject>Simulation</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2017</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNp90E1LAzEQBuAgCtbqwX8Q8CZszSTZZHOU-gkFQat4C7ObpG5pN3WzW-m_t9aCN0_DwMN8vIScAxsBU-IKRtJoyDk_IAPIc8i0AnVIBowZmXEp3o_JSUpzxrjRuhiQtxvf-XZZN9jVsaExUOe7uO--cO1pGfvGYbuh2MwWPtF1jfRj49pYRedpqpf9YqcT7VPdzOj4-fZlekqOAi6SP9vXIXm9u52OH7LJ0_3j-HqSVTwvukyWEBQPBrA0qgRdoEDMZYACgmBOMylEHpxChwUDRG-U1MF4Zaocy4qLIbn4nbtq42fvU2fnsW-b7UrLgUvNQJhiqy5_VarqbnesXbX1cvuUBWZ_crNg97n9h9ex_YN25YL4BsGabwE</recordid><startdate>20170113</startdate><enddate>20170113</enddate><creator>Whitworth, N. J.</creator><creator>Childs, M.</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20170113</creationdate><title>Determination of detonation wave boundary angles via hydrocode simulations using CREST</title><author>Whitworth, N. J. ; Childs, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c258t-4b1f62f91ab96b178a3aa54f181f30d704335fd6ada801aae9647f9e69c5abc23</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Computer simulation</topic><topic>Detonation waves</topic><topic>PBX (explosives)</topic><topic>Shock wave propagation</topic><topic>Simulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Whitworth, N. J.</creatorcontrib><creatorcontrib>Childs, M.</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Whitworth, N. J.</au><au>Childs, M.</au><au>Peiris, Su</au><au>Ravelo, Ramon</au><au>Chau, Ricky</au><au>Oleynik, Ivan</au><au>Germann, Timothy</au><au>Sewell, Tommy</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Determination of detonation wave boundary angles via hydrocode simulations using CREST</atitle><btitle>AIP conference proceedings</btitle><date>2017-01-13</date><risdate>2017</risdate><volume>1793</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>A key input parameter to Detonation Shock Dynamics models is the angle that the propagating detonation wave makes with the charge edge. This is commonly referred to as the boundary angle, and is a property of the explosive/confiner material combination. Such angles can be determined: (i) experimentally from measured detonation wave-shapes, (ii) theoretically, or (iii) via hydrocode simulations using a reactive burn model. Of these approaches: (i) is difficult because of resolution, (ii) breaks down for certain configurations, while (iii) requires a well validated model.
In this paper, the CREST reactive burn model, which has previously been successful in modelling a wide range of explosive phenomena, is used to simulate recent Detonation Confinement Sandwich Tests conducted at LANL using the insensitive high explosive PBX 9502. Simulated detonation wave-shapes in PBX 9502 for a number of different confiner materials and combinations closely match those recorded from the experiments. Boundary angles were subsequently extracted from the simulated results via a wave-shape analysis toolkit. The results shown demonstrate the usefulness of CREST in determining detonation wave boundary angles for a range of explosive/confiner material combinations.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.4971522</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0094-243X |
ispartof | AIP conference proceedings, 2017, Vol.1793 (1) |
issn | 0094-243X 1551-7616 |
language | eng |
recordid | cdi_proquest_journals_2124701398 |
source | American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list) |
subjects | Computer simulation Detonation waves PBX (explosives) Shock wave propagation Simulation |
title | Determination of detonation wave boundary angles via hydrocode simulations using CREST |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T08%3A34%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Determination%20of%20detonation%20wave%20boundary%20angles%20via%20hydrocode%20simulations%20using%20CREST&rft.btitle=AIP%20conference%20proceedings&rft.au=Whitworth,%20N.%20J.&rft.date=2017-01-13&rft.volume=1793&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/1.4971522&rft_dat=%3Cproquest_scita%3E2124701398%3C/proquest_scita%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c258t-4b1f62f91ab96b178a3aa54f181f30d704335fd6ada801aae9647f9e69c5abc23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2124701398&rft_id=info:pmid/&rfr_iscdi=true |