Loading…

Enhanced densification, strength and molecular mechanisms in shock compressed porous silicon

We have recently shown that the final density of silicon under shock compression is anomalously enhanced by introducing voids in the initial uncompressed material. Using molecular simulation, we also demonstrated a molecular mechanism for the effect, which is seen in a growing class of other similar...

Full description

Saved in:
Bibliographic Details
Main Authors: Lane, J. Matthew D., Thompson, Aidan P., Vogler, Tracy J.
Format: Conference Proceeding
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c328t-b820ba6048379f259cb2f24575fb3e3fcd0a7262f4be406c62766158f6a3c36e3
cites
container_end_page
container_issue 1
container_start_page
container_title
container_volume 1793
creator Lane, J. Matthew D.
Thompson, Aidan P.
Vogler, Tracy J.
description We have recently shown that the final density of silicon under shock compression is anomalously enhanced by introducing voids in the initial uncompressed material. Using molecular simulation, we also demonstrated a molecular mechanism for the effect, which is seen in a growing class of other similar materials. We have shown that this mechanism involves a premature local phase transition nucleated by local shear strain. At higher shock loads we show here that this transition becomes frustrated producing amorphous silicon. We also observe local melting below the equilibrium melt line for bulk silicon. Large-scale non-equilibrium molecular dynamics (NEMD) and Hugoniostat simulations of shock compressed porous silicon are used to study the mechanism. Final stress states and strength were characterized versus initial porosity and for various porosity microstructures.
doi_str_mv 10.1063/1.4971692
format conference_proceeding
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_2124701512</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2124701512</sourcerecordid><originalsourceid>FETCH-LOGICAL-c328t-b820ba6048379f259cb2f24575fb3e3fcd0a7262f4be406c62766158f6a3c36e3</originalsourceid><addsrcrecordid>eNp90EtLxDAUBeAgCo6jC_9BwJ3YMe-0SxnGBwy4UXAhhDRNnIxtUpNW8N9bnQF3ru7m4xzuAeAcowVGgl7jBaskFhU5ADPMOS6kwOIQzBCqWEEYfTkGJzlvESKVlOUMvK7CRgdjG9jYkL3zRg8-hiuYh2TD27CBOjSwi601Y6sT7KyZvM9dhj7AvInmHZrY9cnmPIX0McUxw-xbb2I4BUdOt9me7e8cPN-unpb3xfrx7mF5sy4MJeVQ1CVBtRaIlVRWjvDK1MQRxiV3NbXUmQZpSQRxrLYMCSOIFALz0glNDRWWzsHFLrdP8WO0eVDbOKYwVSqCCZMIc0wmdblT2fjh90vVJ9_p9KUwUj_rKaz26_2HP2P6g6pvHP0GvJxw-g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2124701512</pqid></control><display><type>conference_proceeding</type><title>Enhanced densification, strength and molecular mechanisms in shock compressed porous silicon</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><creator>Lane, J. Matthew D. ; Thompson, Aidan P. ; Vogler, Tracy J.</creator><contributor>Peiris, Su ; Ravelo, Ramon ; Chau, Ricky ; Oleynik, Ivan ; Germann, Timothy ; Sewell, Tommy</contributor><creatorcontrib>Lane, J. Matthew D. ; Thompson, Aidan P. ; Vogler, Tracy J. ; Peiris, Su ; Ravelo, Ramon ; Chau, Ricky ; Oleynik, Ivan ; Germann, Timothy ; Sewell, Tommy</creatorcontrib><description>We have recently shown that the final density of silicon under shock compression is anomalously enhanced by introducing voids in the initial uncompressed material. Using molecular simulation, we also demonstrated a molecular mechanism for the effect, which is seen in a growing class of other similar materials. We have shown that this mechanism involves a premature local phase transition nucleated by local shear strain. At higher shock loads we show here that this transition becomes frustrated producing amorphous silicon. We also observe local melting below the equilibrium melt line for bulk silicon. Large-scale non-equilibrium molecular dynamics (NEMD) and Hugoniostat simulations of shock compressed porous silicon are used to study the mechanism. Final stress states and strength were characterized versus initial porosity and for various porosity microstructures.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/1.4971692</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Amorphous silicon ; Densification ; Molecular dynamics ; Phase transitions ; Porosity ; Porous silicon ; Shear strain ; Shock loads ; Silicon</subject><ispartof>AIP conference proceedings, 2017, Vol.1793 (1)</ispartof><rights>Author(s)</rights><rights>2017 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c328t-b820ba6048379f259cb2f24575fb3e3fcd0a7262f4be406c62766158f6a3c36e3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,314,777,781,786,787,23911,23912,25121,27905,27906</link.rule.ids></links><search><contributor>Peiris, Su</contributor><contributor>Ravelo, Ramon</contributor><contributor>Chau, Ricky</contributor><contributor>Oleynik, Ivan</contributor><contributor>Germann, Timothy</contributor><contributor>Sewell, Tommy</contributor><creatorcontrib>Lane, J. Matthew D.</creatorcontrib><creatorcontrib>Thompson, Aidan P.</creatorcontrib><creatorcontrib>Vogler, Tracy J.</creatorcontrib><title>Enhanced densification, strength and molecular mechanisms in shock compressed porous silicon</title><title>AIP conference proceedings</title><description>We have recently shown that the final density of silicon under shock compression is anomalously enhanced by introducing voids in the initial uncompressed material. Using molecular simulation, we also demonstrated a molecular mechanism for the effect, which is seen in a growing class of other similar materials. We have shown that this mechanism involves a premature local phase transition nucleated by local shear strain. At higher shock loads we show here that this transition becomes frustrated producing amorphous silicon. We also observe local melting below the equilibrium melt line for bulk silicon. Large-scale non-equilibrium molecular dynamics (NEMD) and Hugoniostat simulations of shock compressed porous silicon are used to study the mechanism. Final stress states and strength were characterized versus initial porosity and for various porosity microstructures.</description><subject>Amorphous silicon</subject><subject>Densification</subject><subject>Molecular dynamics</subject><subject>Phase transitions</subject><subject>Porosity</subject><subject>Porous silicon</subject><subject>Shear strain</subject><subject>Shock loads</subject><subject>Silicon</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2017</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNp90EtLxDAUBeAgCo6jC_9BwJ3YMe-0SxnGBwy4UXAhhDRNnIxtUpNW8N9bnQF3ru7m4xzuAeAcowVGgl7jBaskFhU5ADPMOS6kwOIQzBCqWEEYfTkGJzlvESKVlOUMvK7CRgdjG9jYkL3zRg8-hiuYh2TD27CBOjSwi601Y6sT7KyZvM9dhj7AvInmHZrY9cnmPIX0McUxw-xbb2I4BUdOt9me7e8cPN-unpb3xfrx7mF5sy4MJeVQ1CVBtRaIlVRWjvDK1MQRxiV3NbXUmQZpSQRxrLYMCSOIFALz0glNDRWWzsHFLrdP8WO0eVDbOKYwVSqCCZMIc0wmdblT2fjh90vVJ9_p9KUwUj_rKaz26_2HP2P6g6pvHP0GvJxw-g</recordid><startdate>20170113</startdate><enddate>20170113</enddate><creator>Lane, J. Matthew D.</creator><creator>Thompson, Aidan P.</creator><creator>Vogler, Tracy J.</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20170113</creationdate><title>Enhanced densification, strength and molecular mechanisms in shock compressed porous silicon</title><author>Lane, J. Matthew D. ; Thompson, Aidan P. ; Vogler, Tracy J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c328t-b820ba6048379f259cb2f24575fb3e3fcd0a7262f4be406c62766158f6a3c36e3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Amorphous silicon</topic><topic>Densification</topic><topic>Molecular dynamics</topic><topic>Phase transitions</topic><topic>Porosity</topic><topic>Porous silicon</topic><topic>Shear strain</topic><topic>Shock loads</topic><topic>Silicon</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lane, J. Matthew D.</creatorcontrib><creatorcontrib>Thompson, Aidan P.</creatorcontrib><creatorcontrib>Vogler, Tracy J.</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lane, J. Matthew D.</au><au>Thompson, Aidan P.</au><au>Vogler, Tracy J.</au><au>Peiris, Su</au><au>Ravelo, Ramon</au><au>Chau, Ricky</au><au>Oleynik, Ivan</au><au>Germann, Timothy</au><au>Sewell, Tommy</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Enhanced densification, strength and molecular mechanisms in shock compressed porous silicon</atitle><btitle>AIP conference proceedings</btitle><date>2017-01-13</date><risdate>2017</risdate><volume>1793</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>We have recently shown that the final density of silicon under shock compression is anomalously enhanced by introducing voids in the initial uncompressed material. Using molecular simulation, we also demonstrated a molecular mechanism for the effect, which is seen in a growing class of other similar materials. We have shown that this mechanism involves a premature local phase transition nucleated by local shear strain. At higher shock loads we show here that this transition becomes frustrated producing amorphous silicon. We also observe local melting below the equilibrium melt line for bulk silicon. Large-scale non-equilibrium molecular dynamics (NEMD) and Hugoniostat simulations of shock compressed porous silicon are used to study the mechanism. Final stress states and strength were characterized versus initial porosity and for various porosity microstructures.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.4971692</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0094-243X
ispartof AIP conference proceedings, 2017, Vol.1793 (1)
issn 0094-243X
1551-7616
language eng
recordid cdi_proquest_journals_2124701512
source American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)
subjects Amorphous silicon
Densification
Molecular dynamics
Phase transitions
Porosity
Porous silicon
Shear strain
Shock loads
Silicon
title Enhanced densification, strength and molecular mechanisms in shock compressed porous silicon
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T22%3A47%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Enhanced%20densification,%20strength%20and%20molecular%20mechanisms%20in%20shock%20compressed%20porous%20silicon&rft.btitle=AIP%20conference%20proceedings&rft.au=Lane,%20J.%20Matthew%20D.&rft.date=2017-01-13&rft.volume=1793&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/1.4971692&rft_dat=%3Cproquest_scita%3E2124701512%3C/proquest_scita%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c328t-b820ba6048379f259cb2f24575fb3e3fcd0a7262f4be406c62766158f6a3c36e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2124701512&rft_id=info:pmid/&rfr_iscdi=true