Loading…
Enhanced densification, strength and molecular mechanisms in shock compressed porous silicon
We have recently shown that the final density of silicon under shock compression is anomalously enhanced by introducing voids in the initial uncompressed material. Using molecular simulation, we also demonstrated a molecular mechanism for the effect, which is seen in a growing class of other similar...
Saved in:
Main Authors: | , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c328t-b820ba6048379f259cb2f24575fb3e3fcd0a7262f4be406c62766158f6a3c36e3 |
---|---|
cites | |
container_end_page | |
container_issue | 1 |
container_start_page | |
container_title | |
container_volume | 1793 |
creator | Lane, J. Matthew D. Thompson, Aidan P. Vogler, Tracy J. |
description | We have recently shown that the final density of silicon under shock compression is anomalously enhanced by introducing voids in the initial uncompressed material. Using molecular simulation, we also demonstrated a molecular mechanism for the effect, which is seen in a growing class of other similar materials. We have shown that this mechanism involves a premature local phase transition nucleated by local shear strain. At higher shock loads we show here that this transition becomes frustrated producing amorphous silicon. We also observe local melting below the equilibrium melt line for bulk silicon. Large-scale non-equilibrium molecular dynamics (NEMD) and Hugoniostat simulations of shock compressed porous silicon are used to study the mechanism. Final stress states and strength were characterized versus initial porosity and for various porosity microstructures. |
doi_str_mv | 10.1063/1.4971692 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_2124701512</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2124701512</sourcerecordid><originalsourceid>FETCH-LOGICAL-c328t-b820ba6048379f259cb2f24575fb3e3fcd0a7262f4be406c62766158f6a3c36e3</originalsourceid><addsrcrecordid>eNp90EtLxDAUBeAgCo6jC_9BwJ3YMe-0SxnGBwy4UXAhhDRNnIxtUpNW8N9bnQF3ru7m4xzuAeAcowVGgl7jBaskFhU5ADPMOS6kwOIQzBCqWEEYfTkGJzlvESKVlOUMvK7CRgdjG9jYkL3zRg8-hiuYh2TD27CBOjSwi601Y6sT7KyZvM9dhj7AvInmHZrY9cnmPIX0McUxw-xbb2I4BUdOt9me7e8cPN-unpb3xfrx7mF5sy4MJeVQ1CVBtRaIlVRWjvDK1MQRxiV3NbXUmQZpSQRxrLYMCSOIFALz0glNDRWWzsHFLrdP8WO0eVDbOKYwVSqCCZMIc0wmdblT2fjh90vVJ9_p9KUwUj_rKaz26_2HP2P6g6pvHP0GvJxw-g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2124701512</pqid></control><display><type>conference_proceeding</type><title>Enhanced densification, strength and molecular mechanisms in shock compressed porous silicon</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><creator>Lane, J. Matthew D. ; Thompson, Aidan P. ; Vogler, Tracy J.</creator><contributor>Peiris, Su ; Ravelo, Ramon ; Chau, Ricky ; Oleynik, Ivan ; Germann, Timothy ; Sewell, Tommy</contributor><creatorcontrib>Lane, J. Matthew D. ; Thompson, Aidan P. ; Vogler, Tracy J. ; Peiris, Su ; Ravelo, Ramon ; Chau, Ricky ; Oleynik, Ivan ; Germann, Timothy ; Sewell, Tommy</creatorcontrib><description>We have recently shown that the final density of silicon under shock compression is anomalously enhanced by introducing voids in the initial uncompressed material. Using molecular simulation, we also demonstrated a molecular mechanism for the effect, which is seen in a growing class of other similar materials. We have shown that this mechanism involves a premature local phase transition nucleated by local shear strain. At higher shock loads we show here that this transition becomes frustrated producing amorphous silicon. We also observe local melting below the equilibrium melt line for bulk silicon. Large-scale non-equilibrium molecular dynamics (NEMD) and Hugoniostat simulations of shock compressed porous silicon are used to study the mechanism. Final stress states and strength were characterized versus initial porosity and for various porosity microstructures.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/1.4971692</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Amorphous silicon ; Densification ; Molecular dynamics ; Phase transitions ; Porosity ; Porous silicon ; Shear strain ; Shock loads ; Silicon</subject><ispartof>AIP conference proceedings, 2017, Vol.1793 (1)</ispartof><rights>Author(s)</rights><rights>2017 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c328t-b820ba6048379f259cb2f24575fb3e3fcd0a7262f4be406c62766158f6a3c36e3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,314,777,781,786,787,23911,23912,25121,27905,27906</link.rule.ids></links><search><contributor>Peiris, Su</contributor><contributor>Ravelo, Ramon</contributor><contributor>Chau, Ricky</contributor><contributor>Oleynik, Ivan</contributor><contributor>Germann, Timothy</contributor><contributor>Sewell, Tommy</contributor><creatorcontrib>Lane, J. Matthew D.</creatorcontrib><creatorcontrib>Thompson, Aidan P.</creatorcontrib><creatorcontrib>Vogler, Tracy J.</creatorcontrib><title>Enhanced densification, strength and molecular mechanisms in shock compressed porous silicon</title><title>AIP conference proceedings</title><description>We have recently shown that the final density of silicon under shock compression is anomalously enhanced by introducing voids in the initial uncompressed material. Using molecular simulation, we also demonstrated a molecular mechanism for the effect, which is seen in a growing class of other similar materials. We have shown that this mechanism involves a premature local phase transition nucleated by local shear strain. At higher shock loads we show here that this transition becomes frustrated producing amorphous silicon. We also observe local melting below the equilibrium melt line for bulk silicon. Large-scale non-equilibrium molecular dynamics (NEMD) and Hugoniostat simulations of shock compressed porous silicon are used to study the mechanism. Final stress states and strength were characterized versus initial porosity and for various porosity microstructures.</description><subject>Amorphous silicon</subject><subject>Densification</subject><subject>Molecular dynamics</subject><subject>Phase transitions</subject><subject>Porosity</subject><subject>Porous silicon</subject><subject>Shear strain</subject><subject>Shock loads</subject><subject>Silicon</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2017</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNp90EtLxDAUBeAgCo6jC_9BwJ3YMe-0SxnGBwy4UXAhhDRNnIxtUpNW8N9bnQF3ru7m4xzuAeAcowVGgl7jBaskFhU5ADPMOS6kwOIQzBCqWEEYfTkGJzlvESKVlOUMvK7CRgdjG9jYkL3zRg8-hiuYh2TD27CBOjSwi601Y6sT7KyZvM9dhj7AvInmHZrY9cnmPIX0McUxw-xbb2I4BUdOt9me7e8cPN-unpb3xfrx7mF5sy4MJeVQ1CVBtRaIlVRWjvDK1MQRxiV3NbXUmQZpSQRxrLYMCSOIFALz0glNDRWWzsHFLrdP8WO0eVDbOKYwVSqCCZMIc0wmdblT2fjh90vVJ9_p9KUwUj_rKaz26_2HP2P6g6pvHP0GvJxw-g</recordid><startdate>20170113</startdate><enddate>20170113</enddate><creator>Lane, J. Matthew D.</creator><creator>Thompson, Aidan P.</creator><creator>Vogler, Tracy J.</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20170113</creationdate><title>Enhanced densification, strength and molecular mechanisms in shock compressed porous silicon</title><author>Lane, J. Matthew D. ; Thompson, Aidan P. ; Vogler, Tracy J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c328t-b820ba6048379f259cb2f24575fb3e3fcd0a7262f4be406c62766158f6a3c36e3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Amorphous silicon</topic><topic>Densification</topic><topic>Molecular dynamics</topic><topic>Phase transitions</topic><topic>Porosity</topic><topic>Porous silicon</topic><topic>Shear strain</topic><topic>Shock loads</topic><topic>Silicon</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lane, J. Matthew D.</creatorcontrib><creatorcontrib>Thompson, Aidan P.</creatorcontrib><creatorcontrib>Vogler, Tracy J.</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lane, J. Matthew D.</au><au>Thompson, Aidan P.</au><au>Vogler, Tracy J.</au><au>Peiris, Su</au><au>Ravelo, Ramon</au><au>Chau, Ricky</au><au>Oleynik, Ivan</au><au>Germann, Timothy</au><au>Sewell, Tommy</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Enhanced densification, strength and molecular mechanisms in shock compressed porous silicon</atitle><btitle>AIP conference proceedings</btitle><date>2017-01-13</date><risdate>2017</risdate><volume>1793</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>We have recently shown that the final density of silicon under shock compression is anomalously enhanced by introducing voids in the initial uncompressed material. Using molecular simulation, we also demonstrated a molecular mechanism for the effect, which is seen in a growing class of other similar materials. We have shown that this mechanism involves a premature local phase transition nucleated by local shear strain. At higher shock loads we show here that this transition becomes frustrated producing amorphous silicon. We also observe local melting below the equilibrium melt line for bulk silicon. Large-scale non-equilibrium molecular dynamics (NEMD) and Hugoniostat simulations of shock compressed porous silicon are used to study the mechanism. Final stress states and strength were characterized versus initial porosity and for various porosity microstructures.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.4971692</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0094-243X |
ispartof | AIP conference proceedings, 2017, Vol.1793 (1) |
issn | 0094-243X 1551-7616 |
language | eng |
recordid | cdi_proquest_journals_2124701512 |
source | American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list) |
subjects | Amorphous silicon Densification Molecular dynamics Phase transitions Porosity Porous silicon Shear strain Shock loads Silicon |
title | Enhanced densification, strength and molecular mechanisms in shock compressed porous silicon |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T22%3A47%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Enhanced%20densification,%20strength%20and%20molecular%20mechanisms%20in%20shock%20compressed%20porous%20silicon&rft.btitle=AIP%20conference%20proceedings&rft.au=Lane,%20J.%20Matthew%20D.&rft.date=2017-01-13&rft.volume=1793&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/1.4971692&rft_dat=%3Cproquest_scita%3E2124701512%3C/proquest_scita%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c328t-b820ba6048379f259cb2f24575fb3e3fcd0a7262f4be406c62766158f6a3c36e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2124701512&rft_id=info:pmid/&rfr_iscdi=true |