Loading…
Study of the phase diagram of dense two-color QCD within lattice simulation
In this paper, we carry out a low-temperature scan of the phase diagram of dense two-color QCD with Nf=2 quarks. The study is conducted using lattice simulation with rooted staggered quarks. At small chemical potential, we observe the hadronic phase, where the theory is in a confining state, chiral...
Saved in:
Published in: | Physical review. D 2016-12, Vol.94 (11), Article 114510 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this paper, we carry out a low-temperature scan of the phase diagram of dense two-color QCD with Nf=2 quarks. The study is conducted using lattice simulation with rooted staggered quarks. At small chemical potential, we observe the hadronic phase, where the theory is in a confining state, chiral symmetry is broken, the baryon density is zero, and there is no diquark condensate. At the critical point μ=mπ/2, we observe the expected second-order transition to Bose-Einstein condensation of scalar diquarks. In this phase, the system is still in confinement in conjunction with nonzero baryon density, but the chiral symmetry is restored in the chiral limit. We have also found that in the first two phases the system is well described by chiral perturbation theory. For larger values of the chemical potential, the system turns into another phase, where the relevant degrees of freedom are fermions residing inside the Fermi sphere, and the diquark condensation takes place on the Fermi surface. In this phase, the system is still in confinement, chiral symmetry is restored, and the system is very similar to the quarkyonic state predicted by SU(Nc) theory at large Nc. |
---|---|
ISSN: | 2470-0010 2470-0029 |
DOI: | 10.1103/PhysRevD.94.114510 |