Loading…
Estimation of viscous dissipation in nanodroplet impact and spreading
The developments in nanocoating and nanospray technology have resulted in the increasing importance of the impact of micro-/nanoscale liquid droplets on solid surface. In this paper, the impact of a nanodroplet on a flat solid surface is examined using molecular dynamics simulations. The impact velo...
Saved in:
Published in: | Physics of fluids (1994) 2015-05, Vol.27 (5) |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The developments in nanocoating and nanospray technology have resulted in the increasing importance of the impact of micro-/nanoscale liquid droplets on solid surface. In this paper, the impact of a nanodroplet on a flat solid surface is examined using molecular dynamics simulations. The impact velocity ranges from 58 m/s to 1044 m/s, in accordance with the Weber number ranging from 0.62 to 200.02 and the Reynolds number ranging from 0.89 to 16.14. The obtained maximum spreading factors are compared with previous models in the literature. The predicted results from the previous models largely deviate from our simulation results, with mean relative errors up to 58.12%. The estimated viscous dissipation is refined to present a modified theoretical model, which reduces the mean relative error to 15.12% in predicting the maximum spreading factor for cases of nanodroplet impact. |
---|---|
ISSN: | 1070-6631 1089-7666 |
DOI: | 10.1063/1.4921141 |