Loading…

Electron transport in endohedral metallofullerene Ce@C82 single-molecule transistors

We have investigated the electron transport in endohedral metallofullerene Ce@C82 single-molecule transistors (SMTs) together with that in reference C84 SMTs. The vibrational modes (bending and stretching) of the encapsulated single Ce atom in the C82 cage appear in Coulomb stability diagrams for th...

Full description

Saved in:
Bibliographic Details
Published in:Applied physics letters 2015-01, Vol.106 (4)
Main Authors: Okamura, Naoya, Yoshida, Kenji, Sakata, Shuichi, Hirakawa, Kazuhiko
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We have investigated the electron transport in endohedral metallofullerene Ce@C82 single-molecule transistors (SMTs) together with that in reference C84 SMTs. The vibrational modes (bending and stretching) of the encapsulated single Ce atom in the C82 cage appear in Coulomb stability diagrams for the single-electron tunneling through Ce@C82 molecules, demonstrating the single-atom sensitivity of the transport measurements. When a bias voltage larger than 100 mV is applied across the source/drain electrodes, large hysteretic behavior is observed in the current-voltage (I-V) characteristics. At the same time, the pattern in the Coulomb stability diagram is changed. No such hysteretic behavior is observed in the I-V curves of hollow-cage C84 SMTs, even when the bias voltage exceeds 500 mV. This hysteretic change in the I-V characteristics is induced by a nanomechanical change in the configuration of the Ce@C82 molecule in the nanogap electrode due to the electric dipole that exists in Ce@C82.
ISSN:0003-6951
1077-3118
DOI:10.1063/1.4907009