Loading…
Most likely maximum entropy for population analysis: A case study in decompression sickness prevention
We estimate the density of a set of biophysical parameters from region censored observations. We propose a new Maximum Entropy (maxent) estimator formulated as finding the most likely constrained maxent density. By using the Ŕnyi entropy of order two instead of the Shannon entropy, we are lead to a...
Saved in:
Main Authors: | , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 421 |
container_issue | 1 |
container_start_page | |
container_title | |
container_volume | 1641 |
creator | Bennani Youssef Pronzato Luc Rendas Maria João |
description | We estimate the density of a set of biophysical parameters from region censored observations. We propose a new Maximum Entropy (maxent) estimator formulated as finding the most likely constrained maxent density. By using the Ŕnyi entropy of order two instead of the Shannon entropy, we are lead to a quadratic optimization problem with linear inequality constraints that has an efficient numerical solution. We compare the proposed estimator to the NPMLE and to the best fitting maxent solutions in real data from hyperbaric diving, showing that the resulting distribution has better generalization performance than NPMLE or maxent alone. |
doi_str_mv | 10.1063/1.4906005 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2124947339</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2124947339</sourcerecordid><originalsourceid>FETCH-LOGICAL-p183t-330f2cddb361d998afa35bc039d73ebbf32ff3dd6f4fbb49c10135511317f9b93</originalsourceid><addsrcrecordid>eNotj01LxDAYhIMoWFcP_oOA5655-6Yf8bYsfsGKFwVvS9Ik0N22qX1bsf_eiJ5mGIaHGcauQaxBFHgLa6lEIUR-whLIc0jLAopTlgihZJpJ_DhnF0QHITJVllXC_EugibfN0bUL7_R3080dd_00hmHhPox8CMPc6qkJPde9bhdq6I5veK3JcZpmu_Cm59bVoRtGR_Tbo6Y-9tHzmHxFVswu2ZnXLbmrf12x94f7t-1Tunt9fN5udukAFU4povBZba3BAqxSlfYac1MLVLZEZ4zHzHu0tvDSGyNVDQIwvgSE0iujcMVu_rjDGD5nR9P-EOYx7qZ9BplUskRU-ANw5lmM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2124947339</pqid></control><display><type>conference_proceeding</type><title>Most likely maximum entropy for population analysis: A case study in decompression sickness prevention</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><creator>Bennani Youssef ; Pronzato Luc ; Rendas Maria João</creator><creatorcontrib>Bennani Youssef ; Pronzato Luc ; Rendas Maria João</creatorcontrib><description>We estimate the density of a set of biophysical parameters from region censored observations. We propose a new Maximum Entropy (maxent) estimator formulated as finding the most likely constrained maxent density. By using the Ŕnyi entropy of order two instead of the Shannon entropy, we are lead to a quadratic optimization problem with linear inequality constraints that has an efficient numerical solution. We compare the proposed estimator to the NPMLE and to the best fitting maxent solutions in real data from hyperbaric diving, showing that the resulting distribution has better generalization performance than NPMLE or maxent alone.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/1.4906005</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Decompression sickness ; Density ; Diving ; Entropy ; Linear functions ; Maximum entropy</subject><ispartof>AIP conference proceedings, 2015, Vol.1641 (1), p.421</ispartof><rights>2015 AIP Publishing LLC.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,780,784,789,790,23930,23931,25140,27925</link.rule.ids></links><search><creatorcontrib>Bennani Youssef</creatorcontrib><creatorcontrib>Pronzato Luc</creatorcontrib><creatorcontrib>Rendas Maria João</creatorcontrib><title>Most likely maximum entropy for population analysis: A case study in decompression sickness prevention</title><title>AIP conference proceedings</title><description>We estimate the density of a set of biophysical parameters from region censored observations. We propose a new Maximum Entropy (maxent) estimator formulated as finding the most likely constrained maxent density. By using the Ŕnyi entropy of order two instead of the Shannon entropy, we are lead to a quadratic optimization problem with linear inequality constraints that has an efficient numerical solution. We compare the proposed estimator to the NPMLE and to the best fitting maxent solutions in real data from hyperbaric diving, showing that the resulting distribution has better generalization performance than NPMLE or maxent alone.</description><subject>Decompression sickness</subject><subject>Density</subject><subject>Diving</subject><subject>Entropy</subject><subject>Linear functions</subject><subject>Maximum entropy</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2015</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNotj01LxDAYhIMoWFcP_oOA5655-6Yf8bYsfsGKFwVvS9Ik0N22qX1bsf_eiJ5mGIaHGcauQaxBFHgLa6lEIUR-whLIc0jLAopTlgihZJpJ_DhnF0QHITJVllXC_EugibfN0bUL7_R3080dd_00hmHhPox8CMPc6qkJPde9bhdq6I5veK3JcZpmu_Cm59bVoRtGR_Tbo6Y-9tHzmHxFVswu2ZnXLbmrf12x94f7t-1Tunt9fN5udukAFU4povBZba3BAqxSlfYac1MLVLZEZ4zHzHu0tvDSGyNVDQIwvgSE0iujcMVu_rjDGD5nR9P-EOYx7qZ9BplUskRU-ANw5lmM</recordid><startdate>20150113</startdate><enddate>20150113</enddate><creator>Bennani Youssef</creator><creator>Pronzato Luc</creator><creator>Rendas Maria João</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20150113</creationdate><title>Most likely maximum entropy for population analysis: A case study in decompression sickness prevention</title><author>Bennani Youssef ; Pronzato Luc ; Rendas Maria João</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p183t-330f2cddb361d998afa35bc039d73ebbf32ff3dd6f4fbb49c10135511317f9b93</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Decompression sickness</topic><topic>Density</topic><topic>Diving</topic><topic>Entropy</topic><topic>Linear functions</topic><topic>Maximum entropy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bennani Youssef</creatorcontrib><creatorcontrib>Pronzato Luc</creatorcontrib><creatorcontrib>Rendas Maria João</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bennani Youssef</au><au>Pronzato Luc</au><au>Rendas Maria João</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Most likely maximum entropy for population analysis: A case study in decompression sickness prevention</atitle><btitle>AIP conference proceedings</btitle><date>2015-01-13</date><risdate>2015</risdate><volume>1641</volume><issue>1</issue><epage>421</epage><issn>0094-243X</issn><eissn>1551-7616</eissn><abstract>We estimate the density of a set of biophysical parameters from region censored observations. We propose a new Maximum Entropy (maxent) estimator formulated as finding the most likely constrained maxent density. By using the Ŕnyi entropy of order two instead of the Shannon entropy, we are lead to a quadratic optimization problem with linear inequality constraints that has an efficient numerical solution. We compare the proposed estimator to the NPMLE and to the best fitting maxent solutions in real data from hyperbaric diving, showing that the resulting distribution has better generalization performance than NPMLE or maxent alone.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.4906005</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0094-243X |
ispartof | AIP conference proceedings, 2015, Vol.1641 (1), p.421 |
issn | 0094-243X 1551-7616 |
language | eng |
recordid | cdi_proquest_journals_2124947339 |
source | American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list) |
subjects | Decompression sickness Density Diving Entropy Linear functions Maximum entropy |
title | Most likely maximum entropy for population analysis: A case study in decompression sickness prevention |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T11%3A43%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Most%20likely%20maximum%20entropy%20for%20population%20analysis:%20A%20case%20study%20in%20decompression%20sickness%20prevention&rft.btitle=AIP%20conference%20proceedings&rft.au=Bennani%20Youssef&rft.date=2015-01-13&rft.volume=1641&rft.issue=1&rft.epage=421&rft.issn=0094-243X&rft.eissn=1551-7616&rft_id=info:doi/10.1063/1.4906005&rft_dat=%3Cproquest%3E2124947339%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p183t-330f2cddb361d998afa35bc039d73ebbf32ff3dd6f4fbb49c10135511317f9b93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2124947339&rft_id=info:pmid/&rfr_iscdi=true |