Loading…

Most likely maximum entropy for population analysis: A case study in decompression sickness prevention

We estimate the density of a set of biophysical parameters from region censored observations. We propose a new Maximum Entropy (maxent) estimator formulated as finding the most likely constrained maxent density. By using the Ŕnyi entropy of order two instead of the Shannon entropy, we are lead to a...

Full description

Saved in:
Bibliographic Details
Main Authors: Bennani Youssef, Pronzato Luc, Rendas Maria João
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 421
container_issue 1
container_start_page
container_title
container_volume 1641
creator Bennani Youssef
Pronzato Luc
Rendas Maria João
description We estimate the density of a set of biophysical parameters from region censored observations. We propose a new Maximum Entropy (maxent) estimator formulated as finding the most likely constrained maxent density. By using the Ŕnyi entropy of order two instead of the Shannon entropy, we are lead to a quadratic optimization problem with linear inequality constraints that has an efficient numerical solution. We compare the proposed estimator to the NPMLE and to the best fitting maxent solutions in real data from hyperbaric diving, showing that the resulting distribution has better generalization performance than NPMLE or maxent alone.
doi_str_mv 10.1063/1.4906005
format conference_proceeding
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2124947339</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2124947339</sourcerecordid><originalsourceid>FETCH-LOGICAL-p183t-330f2cddb361d998afa35bc039d73ebbf32ff3dd6f4fbb49c10135511317f9b93</originalsourceid><addsrcrecordid>eNotj01LxDAYhIMoWFcP_oOA5655-6Yf8bYsfsGKFwVvS9Ik0N22qX1bsf_eiJ5mGIaHGcauQaxBFHgLa6lEIUR-whLIc0jLAopTlgihZJpJ_DhnF0QHITJVllXC_EugibfN0bUL7_R3080dd_00hmHhPox8CMPc6qkJPde9bhdq6I5veK3JcZpmu_Cm59bVoRtGR_Tbo6Y-9tHzmHxFVswu2ZnXLbmrf12x94f7t-1Tunt9fN5udukAFU4povBZba3BAqxSlfYac1MLVLZEZ4zHzHu0tvDSGyNVDQIwvgSE0iujcMVu_rjDGD5nR9P-EOYx7qZ9BplUskRU-ANw5lmM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2124947339</pqid></control><display><type>conference_proceeding</type><title>Most likely maximum entropy for population analysis: A case study in decompression sickness prevention</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><creator>Bennani Youssef ; Pronzato Luc ; Rendas Maria João</creator><creatorcontrib>Bennani Youssef ; Pronzato Luc ; Rendas Maria João</creatorcontrib><description>We estimate the density of a set of biophysical parameters from region censored observations. We propose a new Maximum Entropy (maxent) estimator formulated as finding the most likely constrained maxent density. By using the Ŕnyi entropy of order two instead of the Shannon entropy, we are lead to a quadratic optimization problem with linear inequality constraints that has an efficient numerical solution. We compare the proposed estimator to the NPMLE and to the best fitting maxent solutions in real data from hyperbaric diving, showing that the resulting distribution has better generalization performance than NPMLE or maxent alone.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/1.4906005</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Decompression sickness ; Density ; Diving ; Entropy ; Linear functions ; Maximum entropy</subject><ispartof>AIP conference proceedings, 2015, Vol.1641 (1), p.421</ispartof><rights>2015 AIP Publishing LLC.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,780,784,789,790,23930,23931,25140,27925</link.rule.ids></links><search><creatorcontrib>Bennani Youssef</creatorcontrib><creatorcontrib>Pronzato Luc</creatorcontrib><creatorcontrib>Rendas Maria João</creatorcontrib><title>Most likely maximum entropy for population analysis: A case study in decompression sickness prevention</title><title>AIP conference proceedings</title><description>We estimate the density of a set of biophysical parameters from region censored observations. We propose a new Maximum Entropy (maxent) estimator formulated as finding the most likely constrained maxent density. By using the Ŕnyi entropy of order two instead of the Shannon entropy, we are lead to a quadratic optimization problem with linear inequality constraints that has an efficient numerical solution. We compare the proposed estimator to the NPMLE and to the best fitting maxent solutions in real data from hyperbaric diving, showing that the resulting distribution has better generalization performance than NPMLE or maxent alone.</description><subject>Decompression sickness</subject><subject>Density</subject><subject>Diving</subject><subject>Entropy</subject><subject>Linear functions</subject><subject>Maximum entropy</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2015</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNotj01LxDAYhIMoWFcP_oOA5655-6Yf8bYsfsGKFwVvS9Ik0N22qX1bsf_eiJ5mGIaHGcauQaxBFHgLa6lEIUR-whLIc0jLAopTlgihZJpJ_DhnF0QHITJVllXC_EugibfN0bUL7_R3080dd_00hmHhPox8CMPc6qkJPde9bhdq6I5veK3JcZpmu_Cm59bVoRtGR_Tbo6Y-9tHzmHxFVswu2ZnXLbmrf12x94f7t-1Tunt9fN5udukAFU4povBZba3BAqxSlfYac1MLVLZEZ4zHzHu0tvDSGyNVDQIwvgSE0iujcMVu_rjDGD5nR9P-EOYx7qZ9BplUskRU-ANw5lmM</recordid><startdate>20150113</startdate><enddate>20150113</enddate><creator>Bennani Youssef</creator><creator>Pronzato Luc</creator><creator>Rendas Maria João</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20150113</creationdate><title>Most likely maximum entropy for population analysis: A case study in decompression sickness prevention</title><author>Bennani Youssef ; Pronzato Luc ; Rendas Maria João</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p183t-330f2cddb361d998afa35bc039d73ebbf32ff3dd6f4fbb49c10135511317f9b93</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Decompression sickness</topic><topic>Density</topic><topic>Diving</topic><topic>Entropy</topic><topic>Linear functions</topic><topic>Maximum entropy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bennani Youssef</creatorcontrib><creatorcontrib>Pronzato Luc</creatorcontrib><creatorcontrib>Rendas Maria João</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bennani Youssef</au><au>Pronzato Luc</au><au>Rendas Maria João</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Most likely maximum entropy for population analysis: A case study in decompression sickness prevention</atitle><btitle>AIP conference proceedings</btitle><date>2015-01-13</date><risdate>2015</risdate><volume>1641</volume><issue>1</issue><epage>421</epage><issn>0094-243X</issn><eissn>1551-7616</eissn><abstract>We estimate the density of a set of biophysical parameters from region censored observations. We propose a new Maximum Entropy (maxent) estimator formulated as finding the most likely constrained maxent density. By using the Ŕnyi entropy of order two instead of the Shannon entropy, we are lead to a quadratic optimization problem with linear inequality constraints that has an efficient numerical solution. We compare the proposed estimator to the NPMLE and to the best fitting maxent solutions in real data from hyperbaric diving, showing that the resulting distribution has better generalization performance than NPMLE or maxent alone.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.4906005</doi></addata></record>
fulltext fulltext
identifier ISSN: 0094-243X
ispartof AIP conference proceedings, 2015, Vol.1641 (1), p.421
issn 0094-243X
1551-7616
language eng
recordid cdi_proquest_journals_2124947339
source American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)
subjects Decompression sickness
Density
Diving
Entropy
Linear functions
Maximum entropy
title Most likely maximum entropy for population analysis: A case study in decompression sickness prevention
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T11%3A43%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Most%20likely%20maximum%20entropy%20for%20population%20analysis:%20A%20case%20study%20in%20decompression%20sickness%20prevention&rft.btitle=AIP%20conference%20proceedings&rft.au=Bennani%20Youssef&rft.date=2015-01-13&rft.volume=1641&rft.issue=1&rft.epage=421&rft.issn=0094-243X&rft.eissn=1551-7616&rft_id=info:doi/10.1063/1.4906005&rft_dat=%3Cproquest%3E2124947339%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p183t-330f2cddb361d998afa35bc039d73ebbf32ff3dd6f4fbb49c10135511317f9b93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2124947339&rft_id=info:pmid/&rfr_iscdi=true