Loading…

Inverse-phase Rabi oscillations in semiconductor microcavities

We study experimentally the oscillations of a nonstationary transient signal of a semiconductor microcavity with embedded InGaAs quantum wells. The oscillations occur as a result of quantum beats between the upper and lower polariton modes due to strong exciton-photon coupling in the microcavity sam...

Full description

Saved in:
Bibliographic Details
Published in:Physical review. B 2017-04, Vol.95 (15), p.155304, Article 155304
Main Authors: Trifonov, A. V., Kopteva, N. E., Durnev, M. V., Gerlovin, I. Ya, Cherbunin, R. V., Tzimis, A., Tsintzos, S. I., Hatzopoulos, Z., Savvidis, P. G., Kavokin, A. V.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c226t-ea352ece0ce820febdaae12a219e9e1b10028fbd72cbd6b31379bdb9d1347b33
container_end_page
container_issue 15
container_start_page 155304
container_title Physical review. B
container_volume 95
creator Trifonov, A. V.
Kopteva, N. E.
Durnev, M. V.
Gerlovin, I. Ya
Cherbunin, R. V.
Tzimis, A.
Tsintzos, S. I.
Hatzopoulos, Z.
Savvidis, P. G.
Kavokin, A. V.
description We study experimentally the oscillations of a nonstationary transient signal of a semiconductor microcavity with embedded InGaAs quantum wells. The oscillations occur as a result of quantum beats between the upper and lower polariton modes due to strong exciton-photon coupling in the microcavity sample (Rabi oscillations). The detection of a spectrally resolved signal has allowed for a separate observation of oscillations at the eigenfrequencies of two polariton modes. Surprisingly, the observed oscillations measured at the lower and upper polariton modes have opposite phases. We demonstrate theoretically that opposite-phase oscillations are caused by a pump-induced modification of polariton Hopfield coefficients, which govern the ratio of exciton and photon components in each of the polariton modes. Such behavior is a fundamental feature of the quantum beats of coupled light-matter states. In contrast, the reference pump-probe experiment performed for pure excitonic states in a quantum well heterostructure with no microcavity revealed in-phase oscillations of the pump-probe signals measured at different excitonic levels.
doi_str_mv 10.1103/PhysRevB.95.155304
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2125737328</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2125737328</sourcerecordid><originalsourceid>FETCH-LOGICAL-c226t-ea352ece0ce820febdaae12a219e9e1b10028fbd72cbd6b31379bdb9d1347b33</originalsourceid><addsrcrecordid>eNo9kEFLAzEUhIMoWGr_gKcFz1tfks3u5iJo0VooKKX3kGTf0pR2U_O2hf57V6qeZg7DzPAxds9hyjnIx8_NmVZ4eplqNeVKSSiu2EgUpc61LvX1v1dwyyZEWwDgJegK9Ig9LboTJsL8sLGE2cq6kEXyYbezfYgdZaHLCPfBx645-j6mbPApensKfUC6Yzet3RFOfnXM1m-v69l7vvyYL2bPy9wLUfY5WqkEegSPtYAWXWMtcmEF16iROw4g6tY1lfCuKZ3kstKucbrhsqiclGP2cKk9pPh1ROrNNh5TNywawYWqZCVFPaTEJTUcJErYmkMKe5vOhoP5IWX-SBmtzIWU_AZNSl7r</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2125737328</pqid></control><display><type>article</type><title>Inverse-phase Rabi oscillations in semiconductor microcavities</title><source>American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list)</source><creator>Trifonov, A. V. ; Kopteva, N. E. ; Durnev, M. V. ; Gerlovin, I. Ya ; Cherbunin, R. V. ; Tzimis, A. ; Tsintzos, S. I. ; Hatzopoulos, Z. ; Savvidis, P. G. ; Kavokin, A. V.</creator><creatorcontrib>Trifonov, A. V. ; Kopteva, N. E. ; Durnev, M. V. ; Gerlovin, I. Ya ; Cherbunin, R. V. ; Tzimis, A. ; Tsintzos, S. I. ; Hatzopoulos, Z. ; Savvidis, P. G. ; Kavokin, A. V.</creatorcontrib><description>We study experimentally the oscillations of a nonstationary transient signal of a semiconductor microcavity with embedded InGaAs quantum wells. The oscillations occur as a result of quantum beats between the upper and lower polariton modes due to strong exciton-photon coupling in the microcavity sample (Rabi oscillations). The detection of a spectrally resolved signal has allowed for a separate observation of oscillations at the eigenfrequencies of two polariton modes. Surprisingly, the observed oscillations measured at the lower and upper polariton modes have opposite phases. We demonstrate theoretically that opposite-phase oscillations are caused by a pump-induced modification of polariton Hopfield coefficients, which govern the ratio of exciton and photon components in each of the polariton modes. Such behavior is a fundamental feature of the quantum beats of coupled light-matter states. In contrast, the reference pump-probe experiment performed for pure excitonic states in a quantum well heterostructure with no microcavity revealed in-phase oscillations of the pump-probe signals measured at different excitonic levels.</description><identifier>ISSN: 2469-9950</identifier><identifier>EISSN: 2469-9969</identifier><identifier>DOI: 10.1103/PhysRevB.95.155304</identifier><language>eng</language><publisher>College Park: American Physical Society</publisher><subject>Excitons ; Heterostructures ; Indium gallium arsenides ; Microcavities ; Oscillations ; Polaritons ; Quantum wells ; Resonant frequencies</subject><ispartof>Physical review. B, 2017-04, Vol.95 (15), p.155304, Article 155304</ispartof><rights>Copyright American Physical Society Apr 15, 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c226t-ea352ece0ce820febdaae12a219e9e1b10028fbd72cbd6b31379bdb9d1347b33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Trifonov, A. V.</creatorcontrib><creatorcontrib>Kopteva, N. E.</creatorcontrib><creatorcontrib>Durnev, M. V.</creatorcontrib><creatorcontrib>Gerlovin, I. Ya</creatorcontrib><creatorcontrib>Cherbunin, R. V.</creatorcontrib><creatorcontrib>Tzimis, A.</creatorcontrib><creatorcontrib>Tsintzos, S. I.</creatorcontrib><creatorcontrib>Hatzopoulos, Z.</creatorcontrib><creatorcontrib>Savvidis, P. G.</creatorcontrib><creatorcontrib>Kavokin, A. V.</creatorcontrib><title>Inverse-phase Rabi oscillations in semiconductor microcavities</title><title>Physical review. B</title><description>We study experimentally the oscillations of a nonstationary transient signal of a semiconductor microcavity with embedded InGaAs quantum wells. The oscillations occur as a result of quantum beats between the upper and lower polariton modes due to strong exciton-photon coupling in the microcavity sample (Rabi oscillations). The detection of a spectrally resolved signal has allowed for a separate observation of oscillations at the eigenfrequencies of two polariton modes. Surprisingly, the observed oscillations measured at the lower and upper polariton modes have opposite phases. We demonstrate theoretically that opposite-phase oscillations are caused by a pump-induced modification of polariton Hopfield coefficients, which govern the ratio of exciton and photon components in each of the polariton modes. Such behavior is a fundamental feature of the quantum beats of coupled light-matter states. In contrast, the reference pump-probe experiment performed for pure excitonic states in a quantum well heterostructure with no microcavity revealed in-phase oscillations of the pump-probe signals measured at different excitonic levels.</description><subject>Excitons</subject><subject>Heterostructures</subject><subject>Indium gallium arsenides</subject><subject>Microcavities</subject><subject>Oscillations</subject><subject>Polaritons</subject><subject>Quantum wells</subject><subject>Resonant frequencies</subject><issn>2469-9950</issn><issn>2469-9969</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNo9kEFLAzEUhIMoWGr_gKcFz1tfks3u5iJo0VooKKX3kGTf0pR2U_O2hf57V6qeZg7DzPAxds9hyjnIx8_NmVZ4eplqNeVKSSiu2EgUpc61LvX1v1dwyyZEWwDgJegK9Ig9LboTJsL8sLGE2cq6kEXyYbezfYgdZaHLCPfBx645-j6mbPApensKfUC6Yzet3RFOfnXM1m-v69l7vvyYL2bPy9wLUfY5WqkEegSPtYAWXWMtcmEF16iROw4g6tY1lfCuKZ3kstKucbrhsqiclGP2cKk9pPh1ROrNNh5TNywawYWqZCVFPaTEJTUcJErYmkMKe5vOhoP5IWX-SBmtzIWU_AZNSl7r</recordid><startdate>20170405</startdate><enddate>20170405</enddate><creator>Trifonov, A. V.</creator><creator>Kopteva, N. E.</creator><creator>Durnev, M. V.</creator><creator>Gerlovin, I. Ya</creator><creator>Cherbunin, R. V.</creator><creator>Tzimis, A.</creator><creator>Tsintzos, S. I.</creator><creator>Hatzopoulos, Z.</creator><creator>Savvidis, P. G.</creator><creator>Kavokin, A. V.</creator><general>American Physical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>H8D</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20170405</creationdate><title>Inverse-phase Rabi oscillations in semiconductor microcavities</title><author>Trifonov, A. V. ; Kopteva, N. E. ; Durnev, M. V. ; Gerlovin, I. Ya ; Cherbunin, R. V. ; Tzimis, A. ; Tsintzos, S. I. ; Hatzopoulos, Z. ; Savvidis, P. G. ; Kavokin, A. V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c226t-ea352ece0ce820febdaae12a219e9e1b10028fbd72cbd6b31379bdb9d1347b33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Excitons</topic><topic>Heterostructures</topic><topic>Indium gallium arsenides</topic><topic>Microcavities</topic><topic>Oscillations</topic><topic>Polaritons</topic><topic>Quantum wells</topic><topic>Resonant frequencies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Trifonov, A. V.</creatorcontrib><creatorcontrib>Kopteva, N. E.</creatorcontrib><creatorcontrib>Durnev, M. V.</creatorcontrib><creatorcontrib>Gerlovin, I. Ya</creatorcontrib><creatorcontrib>Cherbunin, R. V.</creatorcontrib><creatorcontrib>Tzimis, A.</creatorcontrib><creatorcontrib>Tsintzos, S. I.</creatorcontrib><creatorcontrib>Hatzopoulos, Z.</creatorcontrib><creatorcontrib>Savvidis, P. G.</creatorcontrib><creatorcontrib>Kavokin, A. V.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physical review. B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Trifonov, A. V.</au><au>Kopteva, N. E.</au><au>Durnev, M. V.</au><au>Gerlovin, I. Ya</au><au>Cherbunin, R. V.</au><au>Tzimis, A.</au><au>Tsintzos, S. I.</au><au>Hatzopoulos, Z.</au><au>Savvidis, P. G.</au><au>Kavokin, A. V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Inverse-phase Rabi oscillations in semiconductor microcavities</atitle><jtitle>Physical review. B</jtitle><date>2017-04-05</date><risdate>2017</risdate><volume>95</volume><issue>15</issue><spage>155304</spage><pages>155304-</pages><artnum>155304</artnum><issn>2469-9950</issn><eissn>2469-9969</eissn><abstract>We study experimentally the oscillations of a nonstationary transient signal of a semiconductor microcavity with embedded InGaAs quantum wells. The oscillations occur as a result of quantum beats between the upper and lower polariton modes due to strong exciton-photon coupling in the microcavity sample (Rabi oscillations). The detection of a spectrally resolved signal has allowed for a separate observation of oscillations at the eigenfrequencies of two polariton modes. Surprisingly, the observed oscillations measured at the lower and upper polariton modes have opposite phases. We demonstrate theoretically that opposite-phase oscillations are caused by a pump-induced modification of polariton Hopfield coefficients, which govern the ratio of exciton and photon components in each of the polariton modes. Such behavior is a fundamental feature of the quantum beats of coupled light-matter states. In contrast, the reference pump-probe experiment performed for pure excitonic states in a quantum well heterostructure with no microcavity revealed in-phase oscillations of the pump-probe signals measured at different excitonic levels.</abstract><cop>College Park</cop><pub>American Physical Society</pub><doi>10.1103/PhysRevB.95.155304</doi></addata></record>
fulltext fulltext
identifier ISSN: 2469-9950
ispartof Physical review. B, 2017-04, Vol.95 (15), p.155304, Article 155304
issn 2469-9950
2469-9969
language eng
recordid cdi_proquest_journals_2125737328
source American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list)
subjects Excitons
Heterostructures
Indium gallium arsenides
Microcavities
Oscillations
Polaritons
Quantum wells
Resonant frequencies
title Inverse-phase Rabi oscillations in semiconductor microcavities
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T13%3A13%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Inverse-phase%20Rabi%20oscillations%20in%20semiconductor%20microcavities&rft.jtitle=Physical%20review.%20B&rft.au=Trifonov,%20A.%20V.&rft.date=2017-04-05&rft.volume=95&rft.issue=15&rft.spage=155304&rft.pages=155304-&rft.artnum=155304&rft.issn=2469-9950&rft.eissn=2469-9969&rft_id=info:doi/10.1103/PhysRevB.95.155304&rft_dat=%3Cproquest_cross%3E2125737328%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c226t-ea352ece0ce820febdaae12a219e9e1b10028fbd72cbd6b31379bdb9d1347b33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2125737328&rft_id=info:pmid/&rfr_iscdi=true