Loading…
Distinguishing Kerr naked singularities and black holes using the spin precession of a test gyro in strong gravitational fields
We study here the precession of the spin of a test gyroscope attached to a stationary observer in the Kerr spacetime, specifically, to distinguish a naked singularity (NS) from a black hole (BH). It was shown recently that for gyros attached to static observers, their precession frequency became arb...
Saved in:
Published in: | Physical review. D 2017-04, Vol.95 (8), Article 084024 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We study here the precession of the spin of a test gyroscope attached to a stationary observer in the Kerr spacetime, specifically, to distinguish a naked singularity (NS) from a black hole (BH). It was shown recently that for gyros attached to static observers, their precession frequency became arbitrarily large in the limit of approach to the ergosurface. For gyros attached to stationary observers that move with nonzero angular velocity Ω, this divergence at the ergosurface can be avoided. Specifically, for such gyros, the precession frequencies diverge on the event horizon of a BH, but are finite and regular for a NS everywhere except at the singularity itself. Therefore a genuine detection of the event horizon becomes possible in this case. We also show that for a near-extremal NS (1 |
---|---|
ISSN: | 2470-0010 2470-0029 |
DOI: | 10.1103/PhysRevD.95.084024 |