Loading…

Change of Life Distribution Via a Hazard Transformation: An Inequality with Application to Minimal Repair

We introduce a general transformation of hazard rates and discuss the corresponding change of a life length distribution. Minimal repair transformations are shown to be special cases of this framework which builds on general results concerning likelihood ratios for point processes, and in particular...

Full description

Saved in:
Bibliographic Details
Published in:Mathematics of operations research 1989-05, Vol.14 (2), p.355-361
Main Authors: Arjas, E, Norros, I
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c284t-d0d985937e14294e671325889749089f2ca3588c47a8f6da09db0774a1d18eff3
cites
container_end_page 361
container_issue 2
container_start_page 355
container_title Mathematics of operations research
container_volume 14
creator Arjas, E
Norros, I
description We introduce a general transformation of hazard rates and discuss the corresponding change of a life length distribution. Minimal repair transformations are shown to be special cases of this framework which builds on general results concerning likelihood ratios for point processes, and in particular on the Girsanov theorem for point processes. We then study the role of the available information and the consequent definition of "state" in the change of distributions. By using the general notion of F -minimal repair, where F stands for the information which identifies the state of the considered device, we show that the "black box"-minimal repair modeling leads to a stochastically longer total life length than the more realistic one based on internal state information. Thus the former forms a potential source of bias in minimal repair modeling.
doi_str_mv 10.1287/moor.14.2.355
format article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_212617112</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>3689713</jstor_id><sourcerecordid>3689713</sourcerecordid><originalsourceid>FETCH-LOGICAL-c284t-d0d985937e14294e671325889749089f2ca3588c47a8f6da09db0774a1d18eff3</originalsourceid><addsrcrecordid>eNqFkM1LwzAYh4MoOD-O3jwEL17szJumTettzI8NJoJM8RayNlkztqZLOmT-9WbWgTdP4c3veT94ELoA0gea8duVta4PrE_7cZIcoB4kNI0SxuEQ9UicsoinyccxOvF-QQgkHFgPmWEl67nCVuOJ0QrfG986M9u0xtb43Ugs8Uh-SVfiqZO119at5C67w4Maj2u13silabf407QVHjTN0hQ_OW4tfja1WcklflWNNO4MHWm59Or89z1Fb48P0-Eomrw8jYeDSVTQjLVRSco8S_KYK2A0ZyrlENMky3LOcpLlmhYyDmXBuMx0WkqSlzPCOZNQQqa0jk_RVTe3cXa9Ub4VC7txdVgpKNAUOAANUNRBhbPeO6VF48KtbiuAiJ1MsZMpgAkqgszAX3b8wrfhfw_HabgL4hDfdLGpd4b8v9OuO7wy8-rTOCX2fUFu9Zf8BgH9jhI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>212617112</pqid></control><display><type>article</type><title>Change of Life Distribution Via a Hazard Transformation: An Inequality with Application to Minimal Repair</title><source>JSTOR Archival Journals and Primary Sources Collection</source><source>BSC - Ebsco (Business Source Ultimate)</source><creator>Arjas, E ; Norros, I</creator><creatorcontrib>Arjas, E ; Norros, I</creatorcontrib><description>We introduce a general transformation of hazard rates and discuss the corresponding change of a life length distribution. Minimal repair transformations are shown to be special cases of this framework which builds on general results concerning likelihood ratios for point processes, and in particular on the Girsanov theorem for point processes. We then study the role of the available information and the consequent definition of "state" in the change of distributions. By using the general notion of F -minimal repair, where F stands for the information which identifies the state of the considered device, we show that the "black box"-minimal repair modeling leads to a stochastically longer total life length than the more realistic one based on internal state information. Thus the former forms a potential source of bias in minimal repair modeling.</description><identifier>ISSN: 0364-765X</identifier><identifier>EISSN: 1526-5471</identifier><identifier>DOI: 10.1287/moor.14.2.355</identifier><identifier>CODEN: MOREDQ</identifier><language>eng</language><publisher>Linthicum: INFORMS</publisher><subject>Climacteric ; compensator ; Girsanov's theorem ; imperfect repair ; Martingales ; Mathematical inequalities ; Mathematical models ; Mathematical transformations ; Operations research ; Probability ; Reliability ; stochastic comparison ; Stochastic models</subject><ispartof>Mathematics of operations research, 1989-05, Vol.14 (2), p.355-361</ispartof><rights>Copyright 1989 The Institute of Management Sciences/Operations Research Society of America</rights><rights>Copyright Institute for Operations Research and the Management Sciences May 1989</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c284t-d0d985937e14294e671325889749089f2ca3588c47a8f6da09db0774a1d18eff3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/3689713$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/3689713$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,58238,58471</link.rule.ids></links><search><creatorcontrib>Arjas, E</creatorcontrib><creatorcontrib>Norros, I</creatorcontrib><title>Change of Life Distribution Via a Hazard Transformation: An Inequality with Application to Minimal Repair</title><title>Mathematics of operations research</title><description>We introduce a general transformation of hazard rates and discuss the corresponding change of a life length distribution. Minimal repair transformations are shown to be special cases of this framework which builds on general results concerning likelihood ratios for point processes, and in particular on the Girsanov theorem for point processes. We then study the role of the available information and the consequent definition of "state" in the change of distributions. By using the general notion of F -minimal repair, where F stands for the information which identifies the state of the considered device, we show that the "black box"-minimal repair modeling leads to a stochastically longer total life length than the more realistic one based on internal state information. Thus the former forms a potential source of bias in minimal repair modeling.</description><subject>Climacteric</subject><subject>compensator</subject><subject>Girsanov's theorem</subject><subject>imperfect repair</subject><subject>Martingales</subject><subject>Mathematical inequalities</subject><subject>Mathematical models</subject><subject>Mathematical transformations</subject><subject>Operations research</subject><subject>Probability</subject><subject>Reliability</subject><subject>stochastic comparison</subject><subject>Stochastic models</subject><issn>0364-765X</issn><issn>1526-5471</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1989</creationdate><recordtype>article</recordtype><recordid>eNqFkM1LwzAYh4MoOD-O3jwEL17szJumTettzI8NJoJM8RayNlkztqZLOmT-9WbWgTdP4c3veT94ELoA0gea8duVta4PrE_7cZIcoB4kNI0SxuEQ9UicsoinyccxOvF-QQgkHFgPmWEl67nCVuOJ0QrfG986M9u0xtb43Ugs8Uh-SVfiqZO119at5C67w4Maj2u13silabf407QVHjTN0hQ_OW4tfja1WcklflWNNO4MHWm59Or89z1Fb48P0-Eomrw8jYeDSVTQjLVRSco8S_KYK2A0ZyrlENMky3LOcpLlmhYyDmXBuMx0WkqSlzPCOZNQQqa0jk_RVTe3cXa9Ub4VC7txdVgpKNAUOAANUNRBhbPeO6VF48KtbiuAiJ1MsZMpgAkqgszAX3b8wrfhfw_HabgL4hDfdLGpd4b8v9OuO7wy8-rTOCX2fUFu9Zf8BgH9jhI</recordid><startdate>19890501</startdate><enddate>19890501</enddate><creator>Arjas, E</creator><creator>Norros, I</creator><general>INFORMS</general><general>The Institute of Management Sciences and the Operations Research Society of America</general><general>Institute for Operations Research and the Management Sciences</general><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope></search><sort><creationdate>19890501</creationdate><title>Change of Life Distribution Via a Hazard Transformation: An Inequality with Application to Minimal Repair</title><author>Arjas, E ; Norros, I</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c284t-d0d985937e14294e671325889749089f2ca3588c47a8f6da09db0774a1d18eff3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1989</creationdate><topic>Climacteric</topic><topic>compensator</topic><topic>Girsanov's theorem</topic><topic>imperfect repair</topic><topic>Martingales</topic><topic>Mathematical inequalities</topic><topic>Mathematical models</topic><topic>Mathematical transformations</topic><topic>Operations research</topic><topic>Probability</topic><topic>Reliability</topic><topic>stochastic comparison</topic><topic>Stochastic models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Arjas, E</creatorcontrib><creatorcontrib>Norros, I</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>Mathematics of operations research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Arjas, E</au><au>Norros, I</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Change of Life Distribution Via a Hazard Transformation: An Inequality with Application to Minimal Repair</atitle><jtitle>Mathematics of operations research</jtitle><date>1989-05-01</date><risdate>1989</risdate><volume>14</volume><issue>2</issue><spage>355</spage><epage>361</epage><pages>355-361</pages><issn>0364-765X</issn><eissn>1526-5471</eissn><coden>MOREDQ</coden><abstract>We introduce a general transformation of hazard rates and discuss the corresponding change of a life length distribution. Minimal repair transformations are shown to be special cases of this framework which builds on general results concerning likelihood ratios for point processes, and in particular on the Girsanov theorem for point processes. We then study the role of the available information and the consequent definition of "state" in the change of distributions. By using the general notion of F -minimal repair, where F stands for the information which identifies the state of the considered device, we show that the "black box"-minimal repair modeling leads to a stochastically longer total life length than the more realistic one based on internal state information. Thus the former forms a potential source of bias in minimal repair modeling.</abstract><cop>Linthicum</cop><pub>INFORMS</pub><doi>10.1287/moor.14.2.355</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0364-765X
ispartof Mathematics of operations research, 1989-05, Vol.14 (2), p.355-361
issn 0364-765X
1526-5471
language eng
recordid cdi_proquest_journals_212617112
source JSTOR Archival Journals and Primary Sources Collection; BSC - Ebsco (Business Source Ultimate)
subjects Climacteric
compensator
Girsanov's theorem
imperfect repair
Martingales
Mathematical inequalities
Mathematical models
Mathematical transformations
Operations research
Probability
Reliability
stochastic comparison
Stochastic models
title Change of Life Distribution Via a Hazard Transformation: An Inequality with Application to Minimal Repair
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T16%3A02%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Change%20of%20Life%20Distribution%20Via%20a%20Hazard%20Transformation:%20An%20Inequality%20with%20Application%20to%20Minimal%20Repair&rft.jtitle=Mathematics%20of%20operations%20research&rft.au=Arjas,%20E&rft.date=1989-05-01&rft.volume=14&rft.issue=2&rft.spage=355&rft.epage=361&rft.pages=355-361&rft.issn=0364-765X&rft.eissn=1526-5471&rft.coden=MOREDQ&rft_id=info:doi/10.1287/moor.14.2.355&rft_dat=%3Cjstor_proqu%3E3689713%3C/jstor_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c284t-d0d985937e14294e671325889749089f2ca3588c47a8f6da09db0774a1d18eff3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=212617112&rft_id=info:pmid/&rft_jstor_id=3689713&rfr_iscdi=true