Loading…

Schottky contact by Ag on In2O3 (111) single crystals

The barrier height of a metal-semiconductor contact was studied by means of angle-resolved photoemission spectroscopy, which was implemented through stepwise Ag deposition on the ultra-high vacuum cleaved (111) surface of melt-grown In2O3 single crystals. A small Schottky barrier height of 0.22 ± 0....

Full description

Saved in:
Bibliographic Details
Published in:Applied physics letters 2014-10, Vol.105 (16)
Main Authors: Nazarzadehmoafi, M., Machulik, S., Neske, F., Scherer, V., Janowitz, C., Galazka, Z., Mulazzi, M., Manzke, R.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The barrier height of a metal-semiconductor contact was studied by means of angle-resolved photoemission spectroscopy, which was implemented through stepwise Ag deposition on the ultra-high vacuum cleaved (111) surface of melt-grown In2O3 single crystals. A small Schottky barrier height of 0.22 ± 0.08 eV was determined by following the band bending of the valence band and core level spectra with Ag thickness and corrected for the photovoltage effect. In addition, the work function of Ag and the electron affinity of In2O3 were measured in situ to be 4.30 ± 0.05 eV and 4.18 ± 0.06 eV, respectively. Agreement was observed when comparing the barrier height from band bending to the calculated one by applying the Schottky-Mott rule, yielding a value of 0.12 ± 0.11 eV. Due to an additionally appearing photovoltage, an explicit reference to the surface electron accumulation layer is not necessary when discussing the Schottky character of the Ag/In2O3 contact.
ISSN:0003-6951
1077-3118
DOI:10.1063/1.4899143