Loading…

Communication: Two-step explosion processes of highly charged fullerene cations C60q+ (q = 20–60)

To establish the fundamental understanding of the fragmentation dynamics of highly positive charged nano- and bio-materials, we carried out on-the-fly classical trajectory calculations on the fragmentation dynamics of C60q+ (q = 20–60). We used the UB3LYP/3-21G level of density functional theory and...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of chemical physics 2014-09, Vol.141 (12)
Main Authors: Yamazaki Kaoru, Nakamura, Takashi, Kanno Manabu, Ueda Kiyoshi, Kono Hirohiko
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:To establish the fundamental understanding of the fragmentation dynamics of highly positive charged nano- and bio-materials, we carried out on-the-fly classical trajectory calculations on the fragmentation dynamics of C60q+ (q = 20–60). We used the UB3LYP/3-21G level of density functional theory and the self-consistent charge density-functional based tight-binding theory. For q ≥ 20, we found that a two-step explosion mechanism governs the fragmentation dynamics: C60q+ first ejects singly and multiply charged fast atomic cations Cz+ (z ≥ 1) via Coulomb explosions on a timescale of 10 fs to stabilize the remaining core cluster. Thermal evaporations of slow atomic and molecular fragments from the core cluster subsequently occur on a timescale of 100 fs to 1 ps. Increasing the charge q makes the fragments smaller. This two-step mechanism governs the fragmentation dynamics in the most likely case that the initial kinetic energy accumulated upon ionization to C60q+ by ion impact or X-ray free electron laser is larger than 100 eV.
ISSN:0021-9606
1089-7690
DOI:10.1063/1.4896656